Deep Generative Models (Pengtao Xie)
Graphical Models
- Lecture 1: Introduction and Bayesian Network
- Lecture 2: Markov Random Field
Inference
- Lecture 3: Variational Inference and Variational Autoencoder (I)
- Lecture 4: Variational Inference and Variational Autoencoder (II)
- Lecture 5: MCMC Sampling (I)
- Lecture 6: MCMC Sampling (II)
Learning
- Lecture 7: Maximum Likelihood and EM Algorithm
Deep Generative Models
-
Lecture 8: Generative Adversarial Networks
- Lecture 9: Basics of Large Language Models (LLMs)
- Lecture 11: Multi-modal LLMs
- Lecture 13: Parameter-Efficient Finetuning of LLMs
- Lecture 10: LLM Reasoning
-
Lecture 12: LLM Watermarking
- Lecture 14: Basics of Diffusion Models
- Lecture 15: Advanced Topics of Diffusion Models (I)
- Lecture 16: Advanced Topics of Diffusion Models (II)
Applications and Course Project Presentations
- Lecture 17: LLMs for Biomedicine
- Lecture 18: Diffusion Models for World Modeling
- Lecture 19: Course Project Presentation (I)
- Lecture 20: Course Project Presentation (II)