Skip to the content.
Deep Generative Models (Pengtao Xie)
Graphical Models
- Lecture 1: Introduction and Bayesian Network
Inference
- Lecture 2: Variational Inference
- Lecture 3: Variational Autoencoder (VAE)
Parameter Learning
- Lecture 4: Maximum Likelihood and EM Algorithm
Deep Generative Models
- Generative Adversarial Network (GAN)
- Lecture 5: Introduction to GAN
- Large Language Model (LLM)
- Lecture 6: Introduction to LLM
- Lecture 7: Multi-modal LLM and Parameter-Efficient Finetuning
- Lecture 8: LLM Reasoning
- Lecture 9: LLM Agent
- Diffusion Model
- Lecture 10: Denoising Diffusion Model
- Lecture 11: Score-based Diffusion Model
Implementation of Deep Generative Models
- Lecture 12 (Guest Lecture): Implementation of Variational Autoencoder
- Lecture 13 (Guest Lecture): Implementation of Generative Adversarial Network
- Lecture 14 (Guest Lecture): Implementation of LLM (I): Transformer and language model
- Lecture 15 (Guest Lecture): Implementation of LLM (II): Multi-modal LLM and parameter-efficient finetuning
- Lecture 16 (Guest Lecture): Implementation of Denoising Diffusion Model
- Lecture 17 (Guest Lecture): Implementation of Score-based Diffusion Model
Advanced Topics and Course Project Presentation
- Lecture 18: World Models
- Lecture 19: Course Project Presentation (I)
- Lecture 20: Course Project Presentation (II)