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Abstract
Humans, as the most powerful learners on the planet, have accumulated a lot of

learning skills, such as learning through tests, interleaving learning, self-explanation,
active recalling, to name a few. These learning skills and methodologies enable hu-
mans to learn new topics more effectively and efficiently. We are interested in inves-
tigating whether humans’ learning skills can be borrowed to help machines to learn
better. Specifically, we aim to formalize these skills and leverage them to train better
machine learning (ML) models. To achieve this goal, we develop a general frame-
work – Skillearn, which provides a principled way to represent humans’ learning
skills mathematically and use the formally-represented skills to improve the train-
ing of ML models. In six case studies, we apply Skillearn to formalize six learning
skills of humans: learning by passing tests, interleaving learning, learning by self-
explanation, small-group learning, learning by teaching, and learning by ignoring.
We use the formalized skills to improve neural architecture search and domain adap-
tation. Experiments on various datasets show that trained using the skills formalized
by Skillearn, ML models achieve significantly better performance.
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Chapter 1

Skillearn: Machine Learning Inspired by
Humans’ Learning Skills

1.1 Introduction
Given a group of human students, assuming they work equally hard, there are three major factors
determining which students learn better than others, including intelligence, learning skills, and
learning materials. People with higher intelligence quotient (IQ) are stronger learners. Learning
materials, such as textbooks, video lectures, practice questions, etc. are also crucial in determin-
ing the quality of learning. Another vital factor impacting learning outcomes is learning skills.
Oftentimes, students in the same class have similar IQ and have access to the same learning ma-
terials, but their final grades (which measure learning quality) have a large variance. The major
differentiating factor is that different students have different levels of mastery of learning skills.
Some students have better learning methodologies, which enable them to learn faster and better.
In the long history of learning, humans have accumulated a lot of effective learning skills, such
as learning through tests, interleaving learning, self-explanation, active recalling, etc.

Similar to human learning, the performance of machine learning (ML) models is also de-
termined by several factors (as compared in Figure 1.1). In the current practice of ML, two
dominant factors determining ML performance are the capacity of models and the abundance of
data. ML model capacity is analogous to the intelligence of humans. From linear models such
as support vector machines to nonlinear models such as deep neural networks, ML researchers
have been continuously building more powerful ML models to deal with more complicated tasks.
It is like the evolution of humans’ brains, which become increasingly intelligent. Data for ML
is analogous to learning materials for humans. ML models trained with more labeled data in
general perform better.

For intelligence and learning materials in human learning (HL), we identify their counterparts
in machine learning as model capacity and data. We are interested in asking: for learning skills in
HL, do they have counterparts in ML as well? Can machines be equipped with effective learning
skills as humans are? In our work, we aim to address these questions. We propose a general
framework – Skillearn, which draws inspiration from humans’ learning skills and formulates
them into machines’ learning skills (MLS). These MLS are leveraged to train better ML models.
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Human Learning Machine Learning

Intelligence

Learning
materials

Learning
skills

Models

Data

Skillearn

• Learning by creating tests
• Interleaving learning
• Learning by ignoring
• …

Figure 1.1: Human learning (HL) versus machine learning (ML). Model capacity in ML is anal-
ogous to intelligence in HL. Data in ML is analogous to learning materials in HL. Machines’
learning skills formulated by our proposed Skillearn framework are analogous to humans’ learn-
ing skills.

In Skillearn, there are one or multiple learner models, each with one or multiple sets of learnable
parameters such as weight parameters, architectures, hyperparameters, etc. Different learners
interact with each other through interaction functions. The learning of all learners is organized
into multiple stages, each involving a subset of learners. The stages have an order, but they
are performed end-to-end in a multi-level optimization framework where latter stages influence
earlier stages and vice versa. We develop a unified optimization algorithm for solving the multi-
level optimization problem in Skillearn.

The major contributions of this work are as follows.
• We propose to leverage broadly-used and effective learning-skills in human learning to develop

better machine learning methods.
• We propose Skillearn, a general framework for formulating humans’ learning skills into ma-

chines’ learning skills that can be leveraged by ML models for achieving better learning out-
comes.

1.2 Skillearn: Machine Learning Inspired by Human’s Learn-
ing Skills

In this section, we present a general framework called Skillearn, which draws inspiration from
humans’ learning skills, formalizes these skills, and leverages them to improve machine learning.
We begin with a brief overview of humans’ learning skills and summarize their properties. Then
we present the Skillearn framework and the optimization algorithm for this framework.

2
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Figure 1.2: The elements of Skillearn and their counterparts in human learning.

1.2.1 Humans’ Learning Skills
Humans, as the most powerful learners on the planet, have accumulated a lot of skills and tech-
niques in learning faster and better. Here are some examples.
• Learning through testing. After learning a topic, a student can solve some test problems

(created or selected by a teacher) about this topic to identify the strong and weak points in
his/her understanding of this topic, and re-learns this topic based on the identified strong and
weak points. In re-learning, the identified strong and weak points help the student to know
what to focus on. The quality of test problems plays a crucial role in effectively evaluating the
student. How to create or select high-quality test problems is an important skill that the teacher
needs to learn.

• Interleaving learning is a learning technique where a learner interleaves the studies of mul-
tiple topics: study topic A for a while, then switch to B, subsequently to C; then switch back
to A, and so on, forming a pattern of ABCABCABC · · · . Interleaving learning is in con-
trast to blocked learning, which studies one topic very thoroughly before moving to another
topic. Compared with blocked learning, interleaving learning increases long-term retention
and improves ability to transfer learned knowledge.

• Learning by ignoring. In course learning, given a large collection of practice problems pro-
vided in the textbook, the teacher selects a subset of problems as homework for the students
to practice instead of using all problems in the textbook. Some practice problems are ignored
because 1) they are too difficult which might confuse the students; 2) they are too simple which
are not effective in helping the students to practice their knowledge learned during lectures; 3)
they are repetitive.

3



Properties of Humans’ Learning Skills

From the above examples of humans’ learning skills, we observe the following properties of
them.
• A learning event involves multiple learners. For example, in learning through testing, there are

two learners: a student and a teacher. The teacher learns how to create test problems and the
student learns how to solve these test problems.

• In a learning task, a learner has multiple aspects to learn about this task. For example, in
learning by ignoring, to create effective homework problems, the teacher needs to learn: 1)
how to solve these problems; 2) which problems are more valuable to use as homework.

• Different learners interact with each other during learning. For example, in learning through
testing, the teacher creates test problems and uses them to evaluate the student.

• In a learning task, the learning process is divided into multiple stages. These stages have
a certain order. Each stage involves a subset of learners. For example, in learning through
testing, there are three stages: 1) the teacher learns a topic; 2) the teacher creates test problems
about this topic and uses them to evaluate the student; 3) based on the strong and weak points
identified during solving the test problems, the student re-learns this topic. The three stages
have a sequential order and cannot be switched. The first stage involves the teacher only; the
second stage involves both the teacher and the student; the third stage involves the student only.

1.2.2 General Framework of Skillearn
Based on the properties of humans’ learning skills, we propose a framework called Skillearn to
formalize the learning skills of humans and incorporate them into machine learning. In Skillearn,
we have the following elements (as shown in Figure 1.2).
• Learners. There could be one or multiple learners. Each learner is an ML model, such as a

deep convolutional network, a deep generative model, a nonparametric kernel density estima-
tor, etc. This is analogous to human learning which involves one or multiple human learners.

• Learnable parameters. Each learner has one or more sets of learnable parameters, which
could be weight parameters of a network, architecture of a network, importance weights of
training examples, hyperparameters, etc. This is analogous to human learning where each
human learner learns multiple aspects in a learning task.

• Interaction function, which describes how two or more learners interact with others. Some
examples of interaction include: 1) in knowledge distillation, given an unlabeled image dataset,
modelA predicts the pseudo labels of these images; then modelB is trained using these images
and the pseudo labels generated by model A; 2) given a set of texts, two text encoders A and
B extract embeddings of the texts; A and B are tied together via distributional matching: the
distribution of embeddings extracted by A is encouraged to have small total-variance with
the distribution of embeddings extracted by B. This is analogous to human learning where
multiple human learners interact with each other.

• Learning stages. The learning of all learners is not conducted at one shot simultaneously.
The learning is performed at multiple stages with an order. At each stage, a subset of learners

4



Notation Meaning
K Number of learning stages
Wk Active learnable parameters of all active learners at the k-th learning stage
Uk Supporting learnable parameters of all active learners at the k-th learning

stage
D

(tr)
k Training datasets of all active learners at the k-th learning stage

Fk Auxiliary datasets used at the k-th learning stage
Lk Training loss at the k-th learning stage
Ik Interaction function at the k-th learning stage
D(val) Validation datasets of all learners
F Auxiliary datasets accessible to all learners
Lval Validation loss

Table 1.1: Notations in the Skillearn framework

participate in the learning. For example, in knowledge distillation, there are two stages: 1) a
teacher model is trained; 2) the teacher model predicts pseudo labels on an unlabeled dataset
and the pseudo-labeled dataset is used to train the student model. The first stage involves a
single learner, which is the teacher. The second stage involves two learners: the teacher and
the student. This is analogous to human learning where the learning process is divided into
multiple stages. Mathematically, we formulate the learning at each stage as an optimization
problem. The outcome of one learning stage is passed to another learning stage via the inter-
action function.

Next, we define the learning stages. Each learning stage performs a focused learning activity
which is defined as an optimization problem. The optimization problem involves a training loss
and (optionally) an interaction function which describes how the learners involved in this stage
interact with each other. A learning stage consists of the following elements:
• Active learners. A subset of learners (one or more) are involved at this learning stage. These

learners are called active learners.
• Active learnable parameters. For each active learner, a sub-collection of its learnable param-

eter sets are trained at this stage.
• Supporting learnable parameters. For each active learner, a sub-collection of its learnable

parameter sets are used to define the loss function and interaction function, but they are not
updated at this stage.

• Interaction function, which depicts the interaction between two or more active learners.

Mathematical Setup

We assume there are a set of learners, each having a training set and optionally a validation
set. Meanwhile, all learners share a common collection of auxiliary datasets F , which could be
unlabeled datasets used for self-supervised pretraining [38], additional labeled datasets used for
validation, and so on. Each learner has one or more sets of learnable parameters, which could
be network weights, architectures, hyperparameters, importance weights of training examples,

5



etc. We assume there are K learning stages. At each of the first K − 1 stages, a subset of
learners are involved in the learning, which are called active learners. For each active learner,
a sub-collection of its learnable parameter sets are trained at this stage, which are called active
learnable parameters. LetWk denote the active learnable parameters of all active learners at stage
k (1 ≤ k ≤ K − 1). Meanwhile, for each active learner, another sub-collection of its learnable
parameter sets are used to define the training loss function and interaction function, but they are
not updated at this stage. We refer to them as supporting learnable parameters. Let Uk denote
the supporting learnable parameters of all active learners, D(tr)

k denote the training datasets of all
active learners, and Fk denote the auxiliary datasets used at this stage to define the interaction
function. The learning activity at stage k is formulated as an optimization problem where the
optimization variables are active learnable parameters and the objective involves a training loss
Lk and (optionally) an interaction function Ik depicting the interaction between active learners.
In the last learning stage K, the models trained in previous learning stages are evaluated on the
validation datasets. Learnable parameters that are not learned in the firstK−1 stages are updated
in stage K by minimizing a validation loss Lval and an interaction function IK . The notations
are summarized in Table 1.1.

The Mathematical Framework for Skillearn

The formulation of Skillearn is shown in Eq.(1.1).

max
{Ui}K−1

i=1

Lval({W ∗
j ({Ui}ji=1)}K−1

j=1 , D
(val), F )+

γKIK({W ∗
j ({Ui}ji=1)}K−1

j=1 , F ) (Learning stage K)

s.t. Learning stage K − 1: W ∗
K−1({Uj}K−1

j=1 ) =

min
WK−1

LK−1(WK−1, UK−1, {W ∗
j ({Ui}ji=1)}K−2

j=1 , D
(tr)
K−1, FK−1)+

γK−1IK−1(WK−1, UK−1, {W ∗
j ({Ui}ji=1)}K−2

j=1 , FK−1)
...
Learning stage k: W ∗

k ({Uj}kj=1) = min
Wk

Lk(Wk, Uk, {W ∗
j ({Ui}ji=1)}k−1

j=1 , D
(tr)
k , Fk)+

γkIk(Wk, Uk, {W ∗
j ({Ui}ji=1)}k−1

j=1 , Fk)
...
Learning stage 1: W ∗

1 (U1) = min
W1

L1(W1, U1, D
(tr)
1 , F1) + γ1I1(W1, U1, F1).

(1.1)
It is a multi-level optimization framework, which involvesK optimization problems. On the con-
straints areK−1 optimization problems, each corresponding to a learning stage. TheK learning
stages are ordered. From bottom to top, the optimization problems correspond to the learning
stage 1, 2, · · · , K respectively. In the optimization problem of the learning stage k (1 ≤ k ≤ K−
1), the optimization variables are the active learnable parameters Wk of all active learners at this
stage. The objective function consists of a training lossLk(Wk, Uk, {W ∗

j ({Ui}ji=1)}k−1
j=1 , D

(tr)
k , Fk)

defined on the active learnable parameters Wk, supporting learnable parameters Uk, optimal so-
lutions {W ∗

j ({Ui}ji=1)}k−1
j=1 obtained at previous learning stages, training datasets D(tr)

k of active
learners, and auxiliary datasets Fk used in this stage. The other part of the objective function is

6



the interaction function Ik(Wk, Uk, {W ∗
j ({Ui}ji=1)}k−1

j=1 , Fk) which depicts how the active learn-
ers interact with each other at this learning stage. γk is a tradeoff parameter between the training
loss and interaction function. Uk is needed to define the objective, but it is not updated at this
stage. After completing the learning at stage k, we obtain the optimal solution W ∗

k ({Uj}kj=1).
Note that W ∗

k is function of {Uj}kj=1 since W ∗
k is a function of the objective and the objective is

a function of {Uj}kj=1. W ∗
k ({Uk}kj=1) is used to define the objectives at later stages.

At the very top of Eq.(1.1), the optimization problem (outside the constraint block) corre-
sponds to the last learning stage which validates the optimal solutions {W ∗

j ({Ui}ji=1)}K−1
j=1 ob-

tained at the first K − 1 learning stages. The optimization variables are learnable parameters
{Ui}K−1

i=1 that have not been learned at the previous K−1 stages. The objective function consists
of a validation loss and an interaction function. γK is a tradeoff parameter. The validation loss
Lval({W ∗

j ({Ui}ji=1)}K−1
j=1 , D

(val), F ) is defined on the validation setsD(val) of all learners, optimal
solutions {W ∗

j ({Ui}ji=1)}K−1
j=1 , and auxiliary datasets F . The interaction function is defined on

{W ∗
j ({Ui}ji=1)}K−1

j=1 and F .
Remarks:

• Note that for simplicity, we assume the optimization problem at each stage is a minimization
problem. The optimization problem can be a more complicated problem such as a min-max
problem.

• At a certain stage, a learnable parameter cannot be simultaneously an active parameter and a
supporting parameter. For active parameters at stage k, once learned, they cannot be active
parameters or supporting parameters at later stages. For supporting parameters at stage k, they
can be active parameters or supporting parameters at later stages.

• Supporting parameters must not be learned at previous stages.

1.2.3 Optimization Algorithm for Skillearn
In this section, we develop an algorithm to solve the Skillearn problem in Eq.(1.1), inspired by
the algorithm in [58]. For each learning stage k with an optimization problem: W ∗

k ({Uj}kj=1) =

minWk
Lk(Wk, Uk, {W ∗

j ({Ui}ji=1)}k−1
j=1 , D

(tr)
k , Fk) + γkIk(Wk,

Uk, {W ∗
j ({Ui}ji=1)}k−1

j=1 , Fk), we approximate the optimal solutionW ∗
k ({Uj}kj=1) by one-step gra-

dient descent update of the variable Wk:

W ∗
k ({Uj}kj=1) ≈ W ′

k({Uj}kj=1) =

Wk − η∇Wk
(Lk(Wk, Uk, {W ∗

j ({Ui}ji=1)}k−1
j=1 , D

(tr)
k , Fk) + γkIk(Wk, Uk, {W ∗

j ({Ui}ji=1)}k−1
j=1 , Fk)).

(1.2)
At learning stages k + 1, · · · , K, W ∗

k ({Uj}kj=1) may be used to define objective functions. For a
stage l where k < l < K, if its objective involves W ∗

k ({Uj}kj=1), we replace W ∗
k ({Uj}kj=1) with

W ′
k({Uj}kj=1) and get an approximated objective. When approximating W ∗

l ({Uj}lj=1), we use
the gradient of the approximated objective:

W ∗
l ({Uj}lj=1) ≈ W ′

l ({Uj}lj=1) =

Wl − η∇Wl
(Ll(Wl, Ul, {W ′

j({Ui}
j
i=1)}l−1

j=1, D
(tr)
l , Fl) + γlIl(Wl, Ul, {W ′

j({Ui}
j
i=1)}l−1

j=1, Fl)).
(1.3)
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The objective at the K-th stage can be approximated as:

Lval({W ′
j({Ui}

j
i=1)}K−1

j=1 , D
(val), F ) + γKIK({W ′

j({Ui}
j
i=1)}K−1

j=1 , F ). (1.4)

We update the learnable parameters {Ui}K−1
i=1 that have not been learned at the previous K − 1

stages by minimizing this approximated objective. The optimization algorithm for Skillearn is
summarized in Algorithm 1.

Algorithm 1: Optimization algorithm for Skillearn
while not converged do

1. For k = 1 · · ·K − 1, update W ∗
k ({Uj}kj=1) using Eq.(1.3)

2. Update {Ui}K−1
i=1 by minimizing the approximated objective in Eq.(1.4)

end

1.3 Case Studies
In this section, we instantiate Skillearn to several specific cases. In each case study, we lever-
age Skillearn to formulate a human-learning skill to a machine learning skill and leverage the
formulated ML skill to train better ML models.

• Learning by passing tests. Learning through tests is a broadly used methodology in hu-
man learning and shows great effectiveness in improving learning outcome: a sequence of
tests are made with increasing levels of difficulty; the learner takes these tests to identify
his/her weak points in learning and continuously addresses these weak points to success-
fully pass these tests. We are interested in investigating whether this powerful learning
technique can be borrowed from humans to improve the learning abilities of machines. We
propose a novel learning approach called learning by passing tests (LPT). In our approach,
a tester model creates increasingly more-difficult tests to evaluate a learner model. The
learner tries to continuously improve its learning ability so that it can successfully pass
however difficult tests created by the tester. We propose a multi-level optimization frame-
work to formulate LPT, where the tester learns to create difficult and meaningful tests and
the learner learns to pass these tests. We develop an efficient algorithm to solve the LPT
problem. Our method is applied for neural architecture search and achieves significant
improvement over state-of-the-art baselines on CIFAR-100, CIFAR-10, and ImageNet.
Please refer to Chapter 2 for details.

• Interleaving learning. Interleaving learning is a human learning technique where a learner
interleaves the studies of multiple topics, which increases long-term retention and im-
proves ability to transfer learned knowledge. Inspired by the interleaving learning tech-
nique of humans, we explore whether this learning methodology is beneficial for improv-
ing the performance of machine learning models as well. We propose a novel machine
learning framework referred to as interleaving learning (IL). In our framework, a set of
models collaboratively learn a data encoder in an interleaving fashion: the encoder is
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trained by model 1 for a while, then passed to model 2 for further training, then model
3, and so on; after trained by all models, the encoder returns back to model 1 and is trained
again, then moving to model 2, 3, etc. This process repeats for multiple rounds. Our frame-
work is based on multi-level optimization consisting of multiple inter-connected learning
stages. An efficient gradient-based algorithm is developed to solve the multi-level opti-
mization problem. We apply interleaving learning to search neural architectures for image
classification on CIFAR-10, CIFAR-100, and ImageNet. The effectiveness of our method
is strongly demonstrated by the experimental results. Please refer to Chapter 3 for details.

• Learning by self-explanation. Learning by self-explanation is an effective learning tech-
nique in human learning, where students explain a learned topic to themselves for deepen-
ing their understanding of this topic. It is interesting to investigate whether this explanation-
driven learning methodology broadly used by humans is helpful for improving machine
learning as well. Based on this inspiration, we propose a novel machine learning method
called learning by self-explanation (LeaSE). In our approach, an explainer model improves
its learning ability by trying to clearly explain to an audience model regarding how a pre-
diction outcome is made. LeaSE is formulated as a four-level optimization problem in-
volving a sequence of four learning stages which are conducted end-to-end in a unified
framework: 1) explainer learns; 2) explainer explains; 3) audience learns; 4) explainer
re-learns based on the performance of the audience. We develop an efficient algorithm to
solve the LeaSE problem. We apply LeaSE for neural architecture search on CIFAR-100,
CIFAR-10, and ImageNet. Experimental results strongly demonstrate the effectiveness of
our method. Please refer to Chapter 4 for details.

• Small-group learning. In human learning, an effective learning methodology is small-
group learning: a small group of students work together towards the same learning objec-
tive, where they express their understanding of a topic to their peers, compare their ideas,
and help each other to trouble-shoot problems. We aim to investigate whether this human
learning method can be borrowed to train better machine learning models, by developing a
novel ML framework – small-group learning (SGL). In our framework, a group of learners
(ML models) with different model architectures collaboratively help each other to learn
by leveraging their complementary advantages. Specifically, each learner uses its interme-
diately trained model to generate a pseudo-labeled dataset and re-trains its model using
pseudo-labeled datasets generated by other learners. SGL is formulated as a multi-level
optimization framework consisting of three learning stages: each learner trains a model
independently and uses this model to perform pseudo-labeling; each learner trains another
model using datasets pseudo-labeled by other learners; learners improve their architec-
tures by minimizing validation losses. An efficient algorithm is developed to solve the
multi-level optimization problem. We apply SGL for neural architecture search. Results
on CIFAR-100, CIFAR-10, and ImageNet demonstrate the effectiveness of our method.
Please refer to Chapter 5 for details.

• Learning by teaching. In human learning, an effective skill in improving learning outcomes
is learning by teaching: a learner deepens his/her understanding of a topic by teaching this
topic to others. We aim to borrow this teaching-driven learning methodology from humans
and leverage it to train more performant machine learning models, by proposing a novel
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ML framework referred to as learning by teaching (LBT). In the LBT framework, a teacher
model improves itself by teaching a student model to learn well. Specifically, the teacher
creates a pseudo-labeled dataset and uses it to train a student model. Based on how the
student performs on a validation dataset, the teacher re-learns its model and re-teaches the
student until the student achieves great validation performance. Our framework is based
on three-level optimization which contains three stages: teacher learns; teacher teaches
student; teacher re-learns based on how well the student performs. A simple but efficient
algorithm is developed to solve the three-level optimization problem. We apply LBT to
search neural architectures on CIFAR-10, CIFAR-100, and ImageNet. The efficacy of our
method is demonstrated in various experiments. Please refer to Chapter 6 for details.

• Learning by ignoring. Learning by ignoring, which identifies less important things and
excludes them from the learning process, is broadly practiced in human learning and has
shown ubiquitous effectiveness. There has been psychological studies showing that learn-
ing to ignore certain things is a powerful tool for helping people focus. We explore whether
this useful human learning methodology can be borrowed to improve machine learning.
We propose a novel machine learning framework referred to as learning by ignoring (LBI).
Our framework automatically identifies pretraining data examples that have large domain
shift from the target distribution by learning an ignoring variable for each example and ex-
cludes them from the pretraining process. We formulate LBI as a three-level optimization
framework where three learning stages are involved: pretraining by minimizing the losses
weighed by ignoring variables; finetuning; updating the ignoring variables by minimiz-
ing the validation loss. An gradient-based algorithm is developed to efficiently solve the
three-level optimization problem in LBI. Experiments on various datasets demonstrate the
effectiveness of our framework. Please refer to Chapter 7 for details.

1.4 Related Works
Developing ML methods by drawing inspirations from humans has been studied for long. For
example, neural networks are inspired by human brain neurons. Curiosity-driven learning [9, 75]
is inspired by humans’ psychology on curiosity. Few-shot concept learning [50] draws inspira-
tions from cognitive science on how humans perform concept learning. In our work, we focus
on drawing inspirations from humans’ learning skills and methodologies, which have not been
well-explored before, though there exist a few previous works touching the surface of this line
of research. For example, curriculum learning [4, 46, 49, 64] is inspired by how human students
learn a curriculum in classrooms. Human students learn easy courses first to lay a solid foun-
dation and then move to more difficult courses. Based on this easy-to-difficult learning style,
curriculum machine learning is proposed where easy ML tasks are learned first before perform-
ing more challenging tasks. As another example, meta learning [28? ] aims to learn a shared
model that can be adapted to different tasks. Our work aims to provide a unified framework
to systematically formalize a variety of human-learning skills into machine learning skills and
leverage them to train better models.
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Chapter 2

Learning by Passing Tests

2.1 Introduction
In human learning, an effective and widely used methodology for improving learning outcome is
to let the learner take increasingly more-difficult tests. To successfully pass a more challenging
test, the learner needs to gain better learning ability. By progressively passing tests that have
increasing levels of difficulty, the learner strengthens his/her learning capability gradually.

Inspired by this test-driven learning technique of humans, we are interested in investigating
whether this methodology is helpful for improving machine learning as well. We propose a
novel machine learning framework called learning by passing tests (LPT). In this framework,
there is a “learner” model and a “tester” model. The tester creates a sequence of “tests” with
growing levels of difficulty. The learner tries to learn better so that it can pass these increasingly
more-challenging tests. Given a large collection of data examples called “test bank”, the tester
creates a test T by selecting a subset of examples from the test bank. The learner applies its
intermediately-trained model M to make predictions on the examples in T . The prediction error
rate R reflects how difficult this test is. If the learner can make correct predictions on T , it means
that T is not difficult enough. In this case, the tester will create a more challenging test T ′ by
selecting a new set of examples from the test bank such that the new error rate R′ achieved by M
on T ′ is larger than R achieved on T . Given this more demanding test T ′, the learner re-learns its
model to pass T ′, in a way that the newly-learned model M ′ achieves a new error rate R′′ on T ′

whereR′′ is smaller thanR′. This process (as illustrated in Figure 7.1) iterates until convergence.
In our framework, both the learner and tester perform learning. The learner learns how to

best conduct a target task J1 and the tester learns how to create difficult and meaningful tests. To
encourage a created test T to be meaningful, the tester trains a model using T to perform a target
task J2. If the model performs well on J2, it indicates that T is meaningful. The learner has
two sets of learnable parameters: neural architecture and network weights. The tester has three
learnable modules: data encoder, test creator, and target-task executor. Learning is organized into
three stages. In the first stage, the learner trains its network weights on the training set of task J1

with the architecture fixed. In the second stage, the tester trains its data encoder and target-task
executor on a created test to perform the target task J2, with the test creator fixed. In the third
stage, the learner updates its model architecture by minimizing the predictive loss L on the test
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Harder tests

Better solutions

TesterLearner

Figure 2.1: Learning by passing tests. A tester model creates tests with increasing levels of
difficulty from a test bank to evaluate a learner model. The learner continuously improves its
learning ability to deliver better solutions for passing those difficult tests.

created by the tester; the tester updates its test creator by maximizing L and minimizing the loss
on the validation set of J2. The three stages are performed jointly end-to-end in a multi-level
optimization framework, where different stages influence each other. We apply our method for
neural architecture search [58, 78, 105] in image classification tasks on CIFAR-100, CIFAR-10,
and ImageNet [22]. Our method achieves significant improvement over state-of-the-art baselines.

The major contributions of this section are as follows:
• Inspired by the test-driven learning technique of humans, we propose a novel ML approach

called learning by passing tests (LPT). In our approach, a tester model creates increasingly
more-difficult tests to evaluate a learner model. The learner tries to continuously improve
its learning ability so that it can successfully pass however difficult tests created by the
tester.

• We propose a multi-level optimization framework to formulate LPT where a learner learns
to pass tests and a tester learns to create difficult and meaningful tests.

• We develop an efficient algorithm to solve LPT.
• We apply our approach to neural architecture search and achieve significant improvement

on CIFAR-100, CIFAR-10, and ImageNet.

2.2 Related Works
Neural Architecture Search (NAS). NAS has achieved remarkable progress recently, which
aims at searching for optimal architectures of neural networks to achieve the best predictive
performance. In general, there are three paradigms of methods in NAS: reinforcement learning
based approaches [76, 105, 106], evolutionary algorithm based approaches [57, 78], and differen-
tiable approaches [10, 58, 95]. In RL-based approaches, a policy is learned to iteratively generate
new architectures by maximizing a reward which is the accuracy on the validation set. Evolu-
tionary learning approaches represent the architectures as individuals in a population. Individu-
als with high fitness scores (validation accuracy) have the privilege to generate offspring, which
replaces individuals with low fitness scores. Differentiable approaches adopt a network pruning
strategy. On top of an over-parameterized network, the weights of connections between nodes are
learned using gradient descent. Then weights close to zero are pruned later on. There have been
many efforts devoted to improving differentiable NAS methods. In P-DARTS [16], the depth of
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searched architectures is allowed to grow progressively during the training process. Search space
approximation and regularization approaches are developed to reduce computational overheads
and improve search stability. PC-DARTS [96] reduces the redundancy in exploring the search
space by sampling a small portion of a super network. Operation search is performed in a sub-
set of channels with the held-out part bypassed in a shortcut. Our proposed LPT framework is
orthogonal to existing NAS approaches and can be applied to any differentiable NAS methods.

Adversarial Learning. Our formulation involves a min-max optimization problem, which is
analogous to that in adversarial learning. Adversarial learning [33] has been widely applied to 1)
data generation [33, 98] where a discriminator tries to distinguish between generated images and
real images and a generator is trained to generate realistic data by making such a discrimination
difficult to achieve; 2) domain adaptation [31] where a discriminator tries to differentiate between
source images and target images while the feature learner learns representations which make such
a discrimination unachievable; 3) adversarial attack and defence [34] where an attacker adds
small perturbations to the input data to alter the prediction outcome and the defender trains the
model in a way that the prediction outcome remains the same given perturbed inputs. Different
from these existing works, in our work, a tester aims to create harder tests to “fail” the learner
while the learner learns to “pass” however hard tests created by the tester. Shu et al. [84] proposed
to use an adversarial examiner to identify the weakness of a trained model. Our work differs from
this work in that we progressively re-train a learner model based on how it performs on the tests
that are created dynamically by a tester model while the learner model in [84] is fixed and not
affected by the examination results. Such et al. [87] proposed to learn a generative adversarial
network [33] to create synthetic examples which are used to train an NAS model. Our work
differs from this work in that we use selected validation examples to validate the model while
Such et al. [87] use synthesized example to train the model.

Curriculum Learning. Our work is also related to curriculum learning (CL) [4, 46, 49, 64].
In CL, a sequence of training datasets with increasing levels of difficulty is used for model
training, from easy to difficult. Our work differs from these previous works in that: our work
dynamically selects more-difficult data examples for model evaluation while previous works
select data examples for model training.

2.3 Methods
In this section, we propose a framework to perform learning by passing tests (LPT) (as shown in
Figure 7.2) and develop an optimization algorithm for solving the LPT problem.

2.3.1 Learning by Passing Tests
In our framework, there is a learner model and a tester model, where the learner studies how to
perform a target task J1 such as classification, regression, etc. The eventual goal is to make the
learner achieve a better learning outcome with help from the tester. There is a collection of data
examples called “test bank”. The tester creates a test by selecting a subset of examples from
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Figure 2.2: Learning by passing tests. The solid arrows denote the process of making predictions
and calculating losses. The dotted arrows denote the process of updating learnable parameters
by minimizing corresponding losses.

the test bank. Given a test T , the learner applies its intermediately-trained model M to make
predictions on T and measures the prediction error rate R. From the perspective of the tester, R
indicates how difficult the test T is. IfR is small, it means that the learner can easily pass this test.
Under such circumstances, the tester will create a more difficult test T ′ which renders the new
error rate R′ achieved by M on T ′ is larger than R. From the learner’s perspective, R′ indicates
how well the learner performs on the test. Given this more difficult test T ′, the learner refines its
model to pass this new test. It aims to learn a new model M ′ such that the newer error rate R′′

achieved by M ′ on T ′ is smaller than R′. This process iterates until an equilibrium is reached.
In addition to being difficult, the created test should be meaningful as well. It is possible that the
test bank contains poor-quality examples where the class labels may be incorrect or the input data
instances are outliers. Using an unmeaningful test containing poor-quality examples to guide the
learning of the learner may render the learner to overfit these bad-quality examples and generalize
poorly on unseen data. To address this problem, we encourage the tester to generate meaningful
tests by leveraging the generated tests to perform a target task J2. Specifically, the tester uses
examples in the test to train a model for performing J2. If the performance (e.g., accuracy) P
achieved by this model in conducting J2 is high, the test is considered to be meaningful. The
tester aims to create a test that can yield a high P .

In our framework, both the learner and the tester performs learning. The learner studies
how to best fulfill the target task J1. The tester studies how to create tests that are difficult and
meaningful. In the learner’ model, there are two sets of learnable parameters: model architec-
ture and network weights. The architecture and weights are both used to make predictions in
J1. The tester’s model performs two tasks simultaneously: creating tests and performing another
target-task J2. The model has three learnable modules: data encoder, test creator, and target-task
executor, where the test creator performs the task of generating tests and the target-task executor
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Notation Meaning
A Architecture of the learner
W Network weights of the learner
E Data encoder of the tester
C Test creator of the tester
X Target-task executor of the tester
D(tr)
ln Training data of the learner

D(tr)
tt Training data of the tester

D
(val)
tt Validation data of the tester

Db Test bank

Table 2.1: Notations in Learning by Passing Tests

conducts J2. The test creator and target-task executor share the same data encoder. The data en-
coder takes a data example d as input and generates a latent representation for this example. Then
the representation is fed into the test creator which determines whether d should be selected into
the test. The representation is also fed into the target-task executor which performs prediction on
d during performing the target task J2.

In our framework, the learning of the learner and the tester is organized into three stages.
In the first stage, the learner learns its network weights W by minimizing the training loss
L(A,W,D

(tr)
ln ) defined on the training data D(tr)

ln in the task J1. The architecture A is used to
define the training loss, but it is not learned at this stage. If A is learned by minimizing this
training loss, a trivial solution will be yielded where A is very large and complex that it can
perfectly overfit the training data but will generalize poorly on unseen data. Let W ∗(A) de-
notes the optimally learned W at this stage. Note that W ∗ is a function of A because W ∗ is
a function of the training loss and the training loss is a function of A. In the second stage,
the tester learns its data encoder E and target-task executor X by minimizing the training loss
L(E,X,D

(tr)
tt ) + γL(E,X, σ(C,E,Db)) in the task J2. The training loss consists of two parts.

The first part L(E,X,D
(tr)
tt ) is defined on the training dataset D(tr)

tt in J2. The second part
L(E,X, σ(C,E,Db)) is defined on the test σ(C,E,Db) created by the test creator. To create
a test, for each example d in the test bank Db, it is first fed into the encoder E, then into the
test creator C, which outputs a binary value indicating whether d should be selected into the
test. σ(C,E,Db) is the collection of examples whose binary value is equal to 1. γ is a tradeoff
parameter between these two parts of losses. The creator C is used to define the second-part loss,
but it is not learned at this stage. Otherwise, a trivial solution will be yielded where C always
sets the binary value to 0 for each test-bank example so that the second-part loss becomes 0. Let
E∗(C) and X∗(C) denote the optimally trained E and X at this stage. Note that they are both
functions of C since they are functions of the training loss and the training loss is a function of
C. In the third stage, the learner learns its architecture by trying to pass the test σ(C,E∗(C), Db)
created by the tester. Specifically, the learner aims to minimize its predictive loss on the test:

L(A,W ∗(A), σ(C,E∗(C), Db)) =
∑

d∈σ(C,E∗(C),Db)

`(A,W ∗(A), d), (2.1)
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where d is an example in the test and `(A,W ∗(A), d) is the loss defined in this example. A
smaller L(A,W ∗(A), σ(C,E∗(C), Db)) indicates that the learner performs well on this test.

Meanwhile, the tester learns its test creator C in a way that C can create a test with more dif-
ficulty and meaningfulness. Difficulty is measured by the learner’s predictive loss L(A,W ∗(A),
σ(C,E∗(C), Db)) on the test. Given a model (A,W ∗(A)) of the learner and two tests of the same
size (same number of examples): σ(C1, E

∗(C1), Db) created by C1 and σ(C2, E
∗(C2), Db) cre-

ated by C2, if L(A,W ∗(A), σ(C1, E
∗(C1), Db)) > L(A,W ∗(A), σ(C2, E

∗(C2), Db)), it means
that σ(C1, E

∗(C1), Db) is more challenging to pass than σ(C2, E
∗(C2), Db). Therefore, the tester

can learn to create a more challenging test by maximizing L(A,W ∗(A), σ(C,E∗(C), Db)). A
trivial solution of increasing L(A,W ∗(A), σ(C,E∗(C), Db)) is to enlarge the size of the test.
But a larger size does not imply more difficulty. To discourage this degenerated solution from
happening, we normalize the loss using the size of the test:

1

|σ (C,E∗(C), Db)|
L (A,W ∗ (A) , σ (C,E∗(C), Db)) , (2.2)

where |σ(C,E∗(C), Db)| is the cardinality of the set σ(C,E∗(C), Db). To measure the meaning-
fulness of a test, we check how well the optimally-trained task executor X∗(C) and data encoder
E∗(C) of the tester perform on the validation dataD(val)

tt of the target task J2, and the performance
is measured by the validation loss: L(E∗(C), X∗(C), D

(val)
tt ). E∗(C) and X∗(C) are trained us-

ing the test generated by C in the second stage. If the validation loss is small, it means that the
created test is helpful in training the task executor and therefore is considered as being meaning-
ful. To create a meaningful test, the tester learns C by minimizing L(E∗(C), X∗(C), D

(val)
tt ). In

sum,C is learned by maximizingL(A,W ∗(A), σ(C,E∗(C), Db))/|σ(C,E∗(C), Db)|−λL(E∗(C),

X∗(C), D
(val)
tt ), where λ is a tradeoff parameter between these two objectives.

The three stages are mutually dependent: W ∗(A) learned in the first stage and E∗(C) and
X∗(C) learned in the second stage are used to define the objective function in the third stage;
the updated C and A in the third stage in turn change the objective functions in the first and
second stage, which subsequently render W ∗(A), E∗(C), and X∗(C) to be changed. Putting
these pieces together, we formulate LPT as the following multi-level optimization problem.

maxC minA
1

|σ(C,E∗(C),Db)|L (A,W ∗ (A) , σ (C,E∗(C), Db))− λL
(
E∗(C), X∗(C), D

(val)
tt

)
(III)

s.t. E∗(C), X∗(C) = minE,X L
(
E,X,D

(tr)
tt

)
+ γL (E,X, σ (C,E,Db)) (Stage II)

W ∗ (A) = minW L
(
A,W,D

(tr)
ln

)
(Stage I)

(2.3)
This formulation nests three optimization problems. On the constraints of the outer optimization
problem are two inner optimization problems corresponding to the first and second learning
stage. The objective function of the outer optimization problem corresponds to the third learning
stage.

As of now, the test σ(C,E,Db) is represented as a subset, which is highly discrete and
therefore difficult for optimization. To address this problem, we perform a continuous relaxation
of σ(C,E,Db):

σ(C,E,Db) = {(d, f(d, C,E))|d ∈ Db}, (2.4)
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where for each example d in the test bank, the original binary value indicating whether d should
be selected is now relaxed to a continuous probability f(d, C,E) representing how likely d
should be selected. Under this relaxation, L(E,X, σ(C,E,Db)) can be computed as follows:

L(E,X, σ(C,E,Db)) =
∑
d∈Db

f(d, C,E)`(E,X, d), (2.5)

where we calculate the loss `(E,X, d) on each test-bank example and weigh this loss using
f(d, C,E). If f(d, C,E) is small, it means that d is less likely to be selected into the test and
its corresponding loss should be down-weighted. Similarly, L(A,W ∗(A), σ(C,E∗(C), Db)) is
calculated as

∑
d∈Db

f(d, C,E∗(C))`(A,W ∗(A), d). And |σ(C,E∗(C), Db)| can be calculated
as

|σ(C,E∗(C), Db)| =
∑
d∈Db

f(d, C,E∗(C)). (2.6)

Similar to [58], we represent the architecture A of the learner in a differentiable way. The search
space of A is composed of a large number of building blocks. The output of each block is
associated with a variable a indicating how important this block is. After learning, blocks whose
a is among the largest are retained to form the final architecture. In this end, architecture search
amounts to optimizing the set of architecture variables A = {a}.

2.3.2 Optimization Algorithm
In this section, we derive an optimization algorithm to solve the LPT problem. Inspired by [58],
we approximate E∗(C) and X∗(C) using one-step gradient descent update of E and X with
respect to L(E,X,D

(tr)
tt ) + γL(E,X, σ(C,E,Db)) and approximate W ∗(A) using one-step gra-

dient descent update of W with respect to L(A,W,D
(tr)
ln ). Then we plug these approximations

into

L(A,W ∗(A), σ(C,E∗(C), Db))/|σ(C,E∗(C), Db)| − λL(E∗(C), X∗(C), D
(val)
tt ), (2.7)

and perform gradient-descent update of C and A with respect to this approximated objective. In
the sequel, we use∇2

Y,Xf(X, Y ) to denote ∂f(X,Y )
∂X∂Y

.
Approximating W ∗(A) using W ′ = W − ξln∇WL(A,W,D

(tr)
ln ) where ξln is a learning rate

and simplifying the notation of σ(C,E∗(C), Db) as σ, we can calculate the approximated gradi-
ent of L (A,W ∗ (A) , σ) w.r.t A as:

∇AL (A,W ∗ (A) , σ) ≈
∇AL

(
A,W − ξln∇WL

(
A,W,D

(tr)
ln

)
, σ
)

=

∇AL (A,W ′, σ)− ξln∇2
A,WL

(
A,W,D

(tr)
ln

)
∇W ′L (A,W ′, σ) .

(2.8)

The second term in the third line involves expensive matrix-vector product, whose computational
complexity can be reduced by a finite difference approximation:

∇2
A,WL

(
A,W,D

(tr)
ln

)
∇W ′L (A,W ′, σ) ≈ 1

2αln

(
∇AL

(
A,W+, D

(tr)
ln

)
−∇AL

(
A,W−, D

(tr)
ln

))
,

(2.9)
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whereW± = W±αln∇W ′L (A,W ′, σ) and αln is a small scalar that equals 0.01/ ‖∇W ′L (A,W ′, σ))‖2.
We approximate E∗(C) and X∗(C) using the following one-step gradient descent update of E
and C respectively:

E ′ = E − ξE∇E[L(E,X,D
(tr)
tt ) + γL(E,X, σ(C,E,Db))]

X ′ = X − ξX∇X [L(E,X,D
(tr)
tt ) + γL(E,X, σ(C,E,Db))]

(2.10)

where ξE and ξX are learning rates. Plugging these approximations into the objective function in
Eq.(2.7), we can learn C by maximizing the following objective using gradient methods:

L(A,W ′, σ(C,E ′, Db))/|σ(C,E ′, Db)| − λL(E ′, X ′, D
(val)
tt ) (2.11)

The derivative of the second term in this objective with respect to C can be calculated as:

∇CL(E ′, X ′, D
(val)
tt ) = ∂E′

∂C
∇E′L(E ′, X ′, D

(val)
tt ) + ∂X′

∂C
∇X′L(E ′, X ′, D

(val)
tt ) (2.12)

where
∂E′

∂C
= −ξEγ∇2

C,EL(E,X, σ(C,E,Db))
∂X′

∂C
= −ξXγ∇2

C,XL(E,X, σ(C,E,Db))
(2.13)

Similar to Eq.(6.8), using finite difference approximation to calculate∇2
C,EL(E,X, σ(C,E,Db))

∇E′L(E ′, X ′, D
(val)
tt ) and ∇2

C,XL(E,X, σ(C,E,Db))∇X′L(E ′, X ′, D
(val)
tt ), we have:

∇CL(E ′, X ′, D
(val)
tt ) =

−γξE ∇CL(E+,X,σ(C,E+,Db))−∇CL(E−,X,σ(C,E−,Db))
2αE

− γξX ∇CL(E,X+,σ(C,E,Db))−∇CL(E,X−,σ(C,E,Db))
2αX

(2.14)
where E± = E±αE∇E′L(E ′, X ′, D

(val)
tt ) and X± = X±αX∇X′L(E ′, X ′, D

(val)
tt ). For the first

term L(A,W ′, σ(C,E ′, Db))/|σ(C,E ′, Db)| in the objective, we can use chain rule to calculate
its derivative w.r.t C, which involves calculating the derivative of L(A,W ′, σ(C,E ′, Db)) and
|σ(C,E ′, Db)| w.r.t to C. The derivative of L(A,W ′, σ(C,E ′, Db)) w.r.t C can be calculated as:

∇CL(A,W ′, σ(C,E ′, Db)) = ∂E′

∂C
∇E′L(A,W ′, σ(C,E ′, Db)), (2.15)

where ∂E′

∂C
is given in Eq.(2.13) and ∇2

C,EL(E,X, σ(C,E,Db)) ×∇E′L(A,W ′, σ(C,E ′, Db))
can be approximated with 1

2αE
(∇CL(E+, X, σ(C,E+, Db))−∇CL(E−, X, σ(C,E−, Db))), where

E± isE±αE∇E′L(A,W ′, σ(C,E ′, Db)). The derivative of |σ(C,E ′, Db)| =
∑

d∈Db
f(d, C,E ′)

w.r.t C can be calculated as∑
d∈Db

∇Cf(d, C,E ′) +
∂E ′

∂C
∇E′f(d, C,E ′) (2.16)

where ∂E′

∂C
is given in Eq.(2.13).

The algorithm for solving LPT is summarized in Algorithm 7.
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Algorithm 2: Optimization algorithm for learning by passing tests
while not converged do

1. Update the architecture of the learner by descending the gradient calculated in
Eq.(6.7)

2. Update the test creator of the tester by ascending the gradient calculated in
Eq.(2.12-2.16)

3. Update the data encoder and target-task executor of the tester using Eq.(2.10)
4. Update the network weights of the learner by descending∇WL(A,W,D

(tr)
ln )

end

2.4 Experiments
We apply LPT for neural architecture search in image classification. Following [58], we first
perform architecture search which finds an optimal cell, then perform architecture evaluation
which composes multiple copies of the searched cell into a large network, trains it from scratch,
and evaluates the trained model on a test set. We let the target tasks of the learner and that of the
tester be the same.

2.4.1 Datasets
We used three datasets in the experiments: CIFAR-10, CIFAR-100, and ImageNet [22]. The
CIFAR-10 dataset contains 50K training images and 10K testing images, from 10 classes (the
number of images in each class is equal). We split the original 50K training set into a 25K
training set and a 25K validation set. In the sequel, when we mention “training set”, it always
refers to the new 25K training set. During architecture search, the training set is used as D(tr)

ln of
the learner and D(tr)

tt of the tester. The validation set is used as the test bank Db and the validation
data D(val)

tt of the tester. Under such a setting, the data encoder and target-task executor of the
tester are trained on a subset (which is a test) of D(val)

tt and validated on the entire set of D(val)
tt .

The interpretation of doing this is: we select a subset of examples from D
(val)
tt to train a model so

that it performs the best on the entire D(val)
tt . During architecture evaluation, the combination of

the training data and validation data is used to train a large network stacking multiple copies of
the searched cell. The CIFAR-100 dataset contains 50K training images and 10K testing images,
from 100 classes (the number of images in each class is equal). Similar to CIFAR-10, the 50K
training images are split into a 25K training set and a 25K validation set. The usage of these
subsets is the same as that for CIFAR-10. The ImageNet dataset contains a training set of 1.3M
images and a validation set of 50K images, from 1000 object classes. The validation set is used
as a test set for architecture evaluation. During architecture search, following [96], 10% of the
1.3M training images are randomly sampled to form a new training set and another 2.5% of
the 1.3M training images are randomly sampled to form a new architecture validation set. The
usage of the new training set and architecture validation set is the same as that in CIFAR-10.
During architecture evaluation, all of the 1.3M training images are used for model training. In
addition to searching architectures directly on ImageNet data, following [58], we also evaluate
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the architectures searched using CIFAR-10 and CIFAR-100 on ImageNet: given a cell searched
using CIFAR-10 and CIFAR-100, multiple copies of it compose a large network, which is then
trained on the 1.3M training data of ImageNet and evaluated on the 50K test data.

2.4.2 Experimental Settings
Our framework is a general one that can be used together with any differentiable search method.
Specifically, we apply our framework to the following NAS methods: 1) DARTS [58], 2) P-
DARTS [16], 3) DARTS+ [54], 4) DARTS- [18], 5) PC-DARTS [96]. The search space in these
methods are similar. The candidate operations include: 3× 3 and 5× 5 separable convolutions,
3 × 3 and 5 × 5 dilated separable convolutions, 3 × 3 max pooling, 3 × 3 average pooling,
identity, and zero. In LPT, the network of the learner is a stack of multiple cells, each consisting
of 7 nodes. For the data encoder of the tester, we tried ResNet-18 and ResNet-50 [37]. For the
test creator and target-task executor, they are set to one feed-forward layer. λ and γ are tuned
using a 5k held-out dataset in {0.1, 0.5, 1, 2, 3}. In most experiments, λ and γ are set to 1 except
for P-DARTS and PC-DARTS. For P-DARTS, λ, γ are set to 0.5, 1 for CIFAR-10 and 1, 0.5 for
CIFAR-100. For PC-DARTS, we use λ = 3, γ = 1 and λ = 0.1, γ = 1 for CIFAR-10 and
CIFAR-100, respectively.

For CIFAR-10 and CIFAR-100, during architecture search, the learner’s network is a stack
of 8 cells, with the initial channel number set to 16. The search is performed for 50 epochs,
with a batch size of 64. The hyperparameters for the learner’s architecture and weights are set in
the same way as DARTS, P-DARTS, DARTS+, and DARTS-. The data encoder and target-task
executor of the tester are optimized using SGD with a momentum of 0.9 and a weight decay of
3e-4. The initial learning rate is set to 0.025 with a cosine decay scheduler. The test creator is
optimized with the Adam optimizer [47] with a learning rate of 3e-4 and a weight decay of 1e-3.

During architecture evaluation, 20 copies of the searched cell are stacked to form the learner’s
network, with the initial channel number set to 36. The network is trained for 600 epochs with
a batch size of 96 (for both CIFAR-10 and CIFAR-100). The experiments are performed on a
single Tesla v100. For ImageNet, following [58], we take the architecture searched on CIFAR-10
and evaluate it on ImageNet. We stack 14 cells (searched on CIFAR-10) to form a large network
and set the initial channel number as 48. The network is trained for 250 epochs with a batch size
of 1024 on 8 Tesla v100s. Each experiment on LPT is repeated for ten times with the random
seed to be from 1 to 10. We report the mean and standard deviation of results obtained from the
10 runs.

2.4.3 Results
Table 6.2 shows the classification error (%), number of weight parameters (millions), and search
cost (GPU days) of different NAS methods on CIFAR-100. From this table, we make the follow-
ing observations. First, when our method LPT is applied to different NAS baselines including
DARTS-1st (first order approximation), DARTS-2nd (second order approximation), DARTS−

(our run), DARTS+, PC-DARTS, and P-DARTS, the classification errors of these baselines can
be significantly reduced. For example, applying our method to P-DARTS, the error reduces from
17.49% to 16.28%. Applying our method to DARTS-2nd, the error reduces from 20.58% to
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Method Error(%) Param(M) Cost

*ResNet [36] 22.10 1.7 -
*DenseNet [45] 17.18 25.6 -
*PNAS [56] 19.53 3.2 150
*ENAS [76] 19.43 4.6 0.5
*AmoebaNet [78] 18.93 3.1 3150
*GDAS [25] 18.38 3.4 0.2
*R-DARTS [100] 18.01±0.26 - 1.6
*DropNAS [42] 16.39 4.4 0.7
†DARTS-1st [58] 20.52±0.31 1.8 0.4

LPT-R18-DARTS-1st (ours) 19.11±0.11 2.1 0.6
*DARTS-2nd [58] 20.58±0.44 1.8 1.5

LPT-R18-DARTS-2nd (ours) 19.47±0.20 2.1 1.8
LPT-R50-DARTS-2nd (ours) 18.40±0.16 2.5 2.0

*DARTS− [18] 17.51±0.25 3.3 0.4
†DARTS− [18] 18.97±0.16 3.1 0.4

LPT-R18-DARTS− (ours) 18.28±0.14 3.4 0.6
∆DARTS+ [53] 17.11±0.43 3.8 0.2

LPT-R18-DARTS+ (ours) 16.58±0.19 3.7 0.3
†PC-DARTS [96] 17.96±0.15 3.9 0.1

LPT-R18-PC-DARTS (ours) 17.04±0.05 3.6 0.1
LPT-R50-PC-DARTS (ours) 16.97±0.21 4.0 0.1

*P-DARTS [16] 17.49 3.6 0.3
LPT-R18-P-DARTS (ours) 16.28±0.10 3.8 0.5
LPT-R50-P-DARTS (ours) 16.38±0.07 3.6 0.5

Table 2.2: Results on CIFAR-100, including classification error (%) on the test set, number
of parameters (millions) in the searched architecture, and search cost (GPU days). LPT-R18-
DARTS-1st denotes that our method LPT is applied to the search space of DARTS. Similar
meanings hold for other notations in such a format. R18 and R50 denote that the data encoder of
the tester in LPT is set to ResNet-18 and ResNet-50 respectively. DARTS-1st and DARTS-2nd
denotes that first order and second order approximation is used in DARTS. * means the results are
taken from DARTS− [18]. † means we re-ran this method for 10 times. ∆ means the algorithm
ran for 600 epochs instead of 2000 epochs in the architecture evaluation stage, to ensure a fair
comparison with other methods (where the epoch number is 600). The search cost is measured
by GPU days on a Tesla v100.

18.40%. This demonstrates the effectiveness of our method in searching for a better architecture.
In our method, the learner continuously improves its architecture by passing the tests created by
the tester with increasing levels of difficulty. These tests can help the learner to identify the weak-
ness of its architecture and provide guidance on how to improve it. Our method creates a new test
on the fly based on how the learner performs in the previous round. From the test bank, the tester
selects a subset of difficult examples to evaluate the learner. This new test poses a greater chal-
lenge to the learner and encourages the learner to improve its architecture so that it can overcome
the new challenge. In contrast, in baseline NAS approaches, a single fixed validation set is used
to evaluate the learner. The learner can achieve a good performance via “cheating”: focusing
on performing well on the majority of easy examples and ignoring the minority of difficult ex-
amples. As a result, the learner’s architecture does not have the ability to deal with challenging
cases in the unseen data. Second, LPT-R50-DARTS-2nd outperforms LPT-R18-DARTS-2nd,
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Method Error(%) Param(M) Cost

*DenseNet [45] 3.46 25.6 -
*HierEvol [57] 3.75±0.12 15.7 300
*NAONet-WS [62] 3.53 3.1 0.4
*PNAS [56] 3.41±0.09 3.2 225
*ENAS [76] 2.89 4.6 0.5
*NASNet-A [106] 2.65 3.3 1800
*AmoebaNet-B [78] 2.55±0.05 2.8 3150
*R-DARTS [100] 2.95±0.21 - 1.6
*GDAS [25] 2.93 3.4 0.2
*GTN [87] 2.92±0.06 8.2 0.67
*SNAS [95] 2.85 2.8 1.5
*BayesNAS [103] 2.81±0.04 3.4 0.2
*MergeNAS [93] 2.73±0.02 2.9 0.2
*NoisyDARTS [19] 2.70±0.23 3.3 0.4
*ASAP [69] 2.68±0.11 2.5 0.2
*SDARTS [14] 2.61±0.02 3.3 1.3
*DropNAS [42] 2.58±0.14 4.1 0.6
*FairDARTS [17] 2.54 3.3 0.4
*DrNAS [15] 2.54±0.03 4.0 0.4
*DARTS-1st [58] 3.00±0.14 3.3 0.4

LPT-R18-DARTS-1st (ours) 2.85±0.09 2.7 0.6
*DARTS-2nd [58] 2.76±0.09 3.3 1.5

LPT-R18-DARTS-2nd (ours) 2.72±0.07 3.4 1.8
LPT-R50-DARTS-2nd (ours) 2.68±0.02 3.4 2.0

*DARTS− [18] 2.59±0.08 3.5 0.4
†DARTS− [18] 2.97±0.04 3.3 0.4

LPT-R18-DARTS− (ours) 2.74±0.07 3.4 0.6
∆DARTS+ [53] 2.83±0.05 3.7 0.4

LPT-R18-DARTS+ (ours) 2.69±0.05 3.6 0.5
*PC-DARTS [96] 2.57±0.07 3.6 0.1

LPT-R18-PC-DARTS (ours) 2.65±0.17 3.7 0.1
*P-DARTS [16] 2.50 3.4 0.3

LPT-R18-P-DARTS (ours) 2.58±0.14 3.3 0.5

Table 2.3: Results on CIFAR-10. * means the results are taken from DARTS− [18], Noisy-
DARTS [19], and DrNAS [15]. The rest notations are the same as those in Table 6.2.

where the former uses ResNet-50 as the data encoder in the tester while the latter uses ResNet-
18. ResNet-50 has a better ability of learning representations than ResNet-18 since it is “deeper”:
50 layers versus 18 layers. This shows that a “stronger” tester can help the learner to learn better.
With a more powerful data encoder, the tester can better understand examples in the test bank and
can make better decisions in creating difficult and meaningful tests. Tests with better quality can
evaluate the learner more effectively and help to improve the learner’s learning capability. When
our method is applied to PC-DARTS and P-DARTS, the performance difference resulting from
ResNet-18 and ResNet-50 is not statistically significant. Third, our method LPT-R18-P-DARTS
achieves the best performance among all methods, which further demonstrates the effectiveness
of LPT in driving the frontiers of neural architecture search forward. Fourth, the number of
weight parameters and search costs corresponding to our methods are on par with those in dif-
ferentiable NAS baselines. This shows that LPT is able to search better-performing architectures
without significantly increasing network size and search cost. A few additional remarks: 1) On
CIFAR-100, DARTS-2nd with second-order approximation in the optimization algorithm is not
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Method
Top-1 Top-5 Param Cost

Error (%) Error (%) (M) (GPU days)

*Inception-v1 [88] 30.2 10.1 6.6 -
*MobileNet [43] 29.4 10.5 4.2 -
*ShuffleNet 2× (v1) [101] 26.4 10.2 5.4 -
*ShuffleNet 2× (v2) [63] 25.1 7.6 7.4 -
*NASNet-A [106] 26.0 8.4 5.3 1800
*PNAS [56] 25.8 8.1 5.1 225
*MnasNet-92 [89] 25.2 8.0 4.4 1667
*AmoebaNet-C [78] 24.3 7.6 6.4 3150
*SNAS-CIFAR10 [95] 27.3 9.2 4.3 1.5
*BayesNAS-CIFAR10 [103] 26.5 8.9 3.9 0.2
*PARSEC-CIFAR10 [12] 26.0 8.4 5.6 1.0
*GDAS-CIFAR10 [25] 26.0 8.5 5.3 0.2
*DSNAS-ImageNet [44] 25.7 8.1 - -
*SDARTS-ADV-CIFAR10 [14] 25.2 7.8 5.4 1.3
*PC-DARTS-CIFAR10 [96] 25.1 7.8 5.3 0.1
*ProxylessNAS-ImageNet [10] 24.9 7.5 7.1 8.3
*FairDARTS-CIFAR10 [17] 24.9 7.5 4.8 0.4
*FairDARTS-ImageNet [17] 24.4 7.4 4.3 3.0
*DrNAS-ImageNet [15] 24.2 7.3 5.2 3.9
*DARTS+-ImageNet [53] 23.9 7.4 5.1 6.8
*DARTS−-ImageNet [18] 23.8 7.0 4.9 4.5
*DARTS+-CIFAR100 [53] 23.7 7.2 5.1 0.2
*DARTS-2nd-CIFAR10 [58] 26.7 8.7 4.7 1.5

LPT-R18-DARTS-2nd-CIFAR10 (ours) 25.3 7.9 4.7 1.8
*P-DARTS (CIFAR10) [16] 24.4 7.4 4.9 0.3
‡LPT-R18-P-DARTS-CIFAR10 (ours) 24.2 7.3 4.9 0.5
*P-DARTS (CIFAR100) [16] 24.7 7.5 5.1 0.3
‡LPT-R18-P-DARTS-CIFAR100 (ours) 24.0 7.1 5.3 0.5
*PC-DARTS-ImageNet [96] 24.2 7.3 5.3 3.8
‡LPT-R18-PC-DARTS-ImageNet (ours) 23.4 6.8 5.7 4.0

Table 2.4: Results on ImageNet, including top-1 and top-5 classification errors on test set. *
means the results are taken from DARTS− [18] and DrNAS [15]. The rest notations are the same
as those in Table 6.2. The first row block shows networks designed by humans manually. The
second block shows non-gradient based methods. The third block shows gradient-based methods.
‡ means the results are obtained by following the hyperparameters selected for CIFAR10/100.
The hyperparameters for CIFAR-100 are used when directly searching on ImageNet.

advantageous compared with DARTS-1st which uses first-order approximation; 2) In our run
of DARTS−, we were not able to achieve the performance reported in [18]; 3) In our run of
DARTS+, in the architecture evaluation stage, we set the number of epochs to 600 instead of
2000 as in [53], to ensure a fair comparison with other methods (where the epoch number is
600).

Table 6.3 shows the classification error (%), number of weight parameters (millions), and
search cost (GPU days) of different NAS methods on CIFAR-10. As can be seen, applying
our proposed LPT to DARTS-1st, DARTS-2nd, DARTS− (our run), and DARTS+ significantly
reduces the errors of these baselines. For example, with the usage of LPT, the error of DARTS-
2nd is reduced from 2.76% to 2.68%. This further demonstrates the efficacy of our method in
searching better-performing architectures, by creating tests with increasing levels of difficulty
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and improving the learner through taking these tests. On PC-DARTS and P-DARTS, applying
our method does not yield better performance.

Table 6.4 shows the results on ImageNet, including top-1 and top-5 classification errors on
the test set. In our proposed LPT-R18-PC-DARTS-ImageNet, the architecture is searched on
ImageNet, where our method performs much better than PC-DARTS-ImageNet and achieves
the lowest error (23.4% top-1 error and 6.8% top-5 error) among all methods in Table 6.4.
In our methods including LPT-R18-P-DARTS-CIFAR100, LPT-R18-P-DARTS-CIFAR10, and
LPT-R18-DARTS-2nd-CIFAR10, the architectures are searched on CIFAR-10 or CIFAR-100
and evaluated on ImageNet, where these methods outperform their corresponding baselines
P-DARTS-CIFAR100, P-DARTS-CIFAR10, and DARTS-2nd-CIFAR10. These results further
demonstrate the effectiveness of our method.

2.4.4 Ablation Studies
In order to evaluate the effectiveness of individual modules in LPT, we compare the full LPT
framework with the following ablation settings.
• Ablation setting 1. In this setting, the tester creates tests solely by maximizing their level

of difficulty, without considering their meaningfulness. Accordingly, the second stage in LPT
where the tester learns to perform a target-task by leveraging the created tests is removed. The
tester directly learns a selection scalar s(d) ∈ [0, 1] for each example d in the test bank without
going through a data encoder or test creator. The corresponding formulation is:

maxS minA
1∑

d∈Db
s(d)

∑
d∈Db

s(d)`(A,W ∗(A), d)

s.t. W ∗(A) = minW L
(
A,W,D

(tr)
ln

) (2.17)

where S = {s(d)|d ∈ Db}. In this study, λ and γ are both set to 1. The data encoder of
the tester is ResNet-18. For CIFAR-100, LPT is applied to P-DARTS and DARTS-2nd. For
CIFAR-10, LPT is applied to DARTS-2nd.

• Ablation setting 2. In this setting, in the second stage of LPT, the tester is trained solely
based on the created test, without using the training data of the target task. The corresponding
formulation is:

maxC minA
1

|σ(C,E∗(C),Db)|L (A,W ∗ (A) , σ (C,E∗(C), Db))− λL
(
E∗(C), X∗(C), D

(val)
tt

)
s.t. E∗(C), X∗(C) = minE,X L (E,X, σ (C,E,Db))

W ∗ (A) = minW L
(
A,W,D

(tr)
ln

)
(2.18)

In this study, λ and γ are both set to 1. The data encoder of the tester is ResNet-18. For
CIFAR-100, LPT is applied to P-DARTS and DARTS-2nd. For CIFAR-10, LPT is applied to
DARTS-2nd.

• Ablation study on λ. We are interested in how the learner’s performance varies as the tradeoff
parameter λ in Eq.(2.3) increases. In this study, the other tradeoff parameter γ in Eq.(2.3) is
set to 1. For both CIFAR-100 and CIFAR-10, we randomly sample 5K data from the 25K
training and 25K validation data, and use it as a test set to report performance in this ablation
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Method Error (%)
Difficult only (DARTS-2nd, CIFAR-100) 20.38±0.17
Difficult + meaningful (DARTS-2nd, CIFAR-100) 19.47±0.20
Difficult only (P-DARTS, CIFAR-100) 18.12±0.11
Difficult + meaningful (P-DARTS, CIFAR-100) 16.28±0.10
Difficult only (DARTS-2nd, CIFAR-10) 2.79±0.06
Difficult + meaningful (DARTS-2nd, CIFAR-10) 2.72±0.07

Table 2.5: Results for ablation setting 1. “Difficult only” denotes that the tester creates tests
solely by maximizing their level of difficulty, without considering their meaningfulness, i.e., the
tester does not use the tests for learning to perform the target task. “Difficult + meaningful”
denotes the full LPT framework where the tester creates tests by maximizing both difficulty and
meaningfulness.

Method Error (%)
Test only (DARTS-2nd, CIFAR-100) 19.81±0.06
Test + training (DARTS-2nd, CIFAR-100) 19.47±0.20
Test only (P-DARTS, CIFAR-100) 17.54±0.07
Test + training (P-DARTS, CIFAR-100) 16.28±0.10
Test only (DARTS-2nd, CIFAR-10) 2.75±0.03
Test + training (DARTS-2nd, CIFAR-10) 2.72±0.07

Table 2.6: Results for ablation setting 2. “Test only” denotes that the tester is trained only using
the created test to perform the target task. “Test + training” denotes that the tester is trained using
both the test and the training data of the target task.

study. The rest 45K data is used as before. Tester’s data encoder is ResNe-18. LPT is applied
to P-DARTS.

• Ablation study on γ. We investigate how the learner’s performance varies as c increases. In
this study, the other tradeoff parameter λ is set to 1. Similar to the ablation study on λ, on 5K
randomly-sampled test data, we report performance of architectures searched under different
values of γ. Tester’s data encoder is ResNe-18. LPT is applied to P-DARTS.

Table 6.5 shows the results for ablation setting 1. As can be seen, on both CIFAR-10 and
CIFAR-100, creating tests that are both difficult and meaningful is better than creating tests solely
by maximizing difficulty. The reason is that a difficult test could be composed of bad-quality ex-
amples such as outliers and incorrectly-labeled examples. Even a highly-accurate model cannot
achieve good performance on such erratic examples. To address this problem, it is necessary
to make the created tests meaningful. LPT achieves meaningfulness of the tests by making the
tester leverage the created tests to perform the target task. The results demonstrate that this is an
effective way of improving meaningfulness.

Table 6.6 shows the results for ablation setting 2. As can be seen, for both CIFAR-100 and
CIFAR-10, using both the created test and the training data of the target task to train the tester
performs better than using the test only. By leveraging the training data, the data encoder can be
better trained. And a better encoder can help to create higher-quality tests.
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Figure 2.3: How errors change as λ increases.
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Figure 2.4: How errors change as γ increases.

Figure 7.3 shows how classification errors change as λ increases. As can be seen, on both
CIFAR-100 and CIFAR-10, when λ increases from 0 to 0.5, the error decreases. However,
further increasing λ renders the error to increase. From the tester’s perspective, λ explores a
tradeoff between difficulty and meaningfulness of the tests. Increasing λ encourages the tester
to create tests that are more meaningful. Tests with more meaningfulness can more reliably
evaluate the learner. However, if λ is too large, the tests are biased to be more meaningful but
less difficult. Lacking enough difficulty, the tests may not be compelling enough to drive the
learner for improvement. Such a tradeoff effect is observed in the results on CIFAR-10 as well.

Figure 6.4 shows how classification errors change as γ increases. As can be seen, on both
CIFAR-100 and CIFAR-10, when γ increases from 0 to 0.5, the error decreases. However, further
increasing γ renders the error to increase. Under a larger γ, the created test plays a larger role
in training the tester to perform the target task. This implicitly encourages the test creator to
generate tests that are more meaningful. However, if γ is too large, training is dominated by
the created test which incurs the following risk: if the test is not meaningful, it will result in a
poor-quality data-encoder which degrades the quality of created tests.

2.5 Conclusions
In this section, we propose a new machine learning approach – learning by passing tests (LPT),
inspired by the test-driven learning technique of humans. In LPT, a tester model creates a se-
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quence of tests with growing levels of difficulty. A learner model continuously improves its
learning ability by striving to pass these increasingly more-challenging tests. We propose a
multi-level optimization framework to formalize LPT where the tester learns to select hard vali-
dation examples that render the learner to make large prediction errors and the learner refines its
model to rectify these prediction errors. Our framework is applied for neural architecture search
and achieves significant improvement on CIFAR-100, CIFAR-10, and ImageNet.
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Chapter 3

Interleaving Learning

3.1 Introduction
Interleaving learning is a learning technique where a learner interleaves the studies of multiple
topics: study topicA for a while, then switch toB, subsequently to C; then switch back toA, and
so on, forming a pattern of ABCABCABC · · · . Interleaving learning is in contrast to blocked
learning, which studies one topic very thoroughly before moving to another topic. Compared
with blocked learning, interleaving learning increases long-term retention and improves ability
to transfer learned knowledge. Figure 7.1 illustrates the difference between interleaving learning
and block learning.

Motivated by humans’ interleaving learning methodology, we are intrigued to explore whether
machine learning can be benefited from this learning methodology as well. We propose a novel
multi-level optimization framework to formalize the idea of learning multiple topics in an in-
terleaving way. In this framework, we assume there are K learning tasks, each performed by a
learner model. Each learner has a data encoder and a task-specific head. The data encoders of all
learners share the same architecture, but may have different weight parameters. The K learners
perform M rounds of interleaving learning with the following order:

l1, l2, · · · , lK︸ ︷︷ ︸
Round 1

l1, l2, · · · , lK︸ ︷︷ ︸
Round 2

· · · l1, l2, · · · , lK︸ ︷︷ ︸
Round m

· · · l1, l2, · · · , lK︸ ︷︷ ︸
Round M

(3.1)

where lk denotes that the k-th learner performs learning. In the first round, we first learn l1, then
learn l2, and so on. At the end of the first round, lK is learned. Then we move to the second
round, which starts with learning l1, then learns l2, and so on. This pattern repeats until the M
rounds of learning are finished. Between two consecutive learners lklk+1, the encoder weights
of the latter learner lk+1 are encouraged to be close to the optimally learned encoder weights of
the former learner lk. In the interleaving process, the K learners help each other to learn better.
Each learner transfers the knowledge learned in its task to the next learner by using its trained
encoder to initialize the encoder of the next learner. Meanwhile, each learner leverages the
knowledge shared by the previous learner to better train its own model. Via knowledge sharing,
in one round of learning, l1 helps l2 to learn better, l2 helps l3 to learn better, and so on. Then
moving into the next round, lK learned in the previous round helps l1 to re-learn for achieving
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Figure 3.1: Comparison between interleaving learning and block learning. In interleaving learn-
ing, we perform task 1 for a short while, then move to task 2, then task 3. Afterwards, we move
from task 3 back to task 1. This process iterates where each task is performed for a short time
period before switching to another task. In contrast, in block learning, we perform task 1 to the
very end, then move to task 2, and later task 3. Each task is performed for a long time period
until it is completed. Once a task is finished, it will not be performed again.

a better learning outcome, then a better l1 further helps l2 to learn better, and so on. After M
rounds of learning, each learner uses its model trained in the final round to make predictions on
a validation dataset and updates their shared encoder architecture by minimizing the validation
losses. Our interleaving learning framework is applied to search neural architectures for image
classification on CIFAR-10, CIFAR-100, and ImageNet, where experimental results demonstrate
the effectiveness of our method.

The major contributions of this chapter are as follows:
• Drawing insights from a human learning methodology – interleaving learning, we propose

a novel machine learning framework which enables a set of models to cooperatively train
a data encoder in an interleaving way: model 1 trains this encoder for a short time, then
hands it over to model 2 to continue the training, then to model 3, etc. When the encoder
is trained by all models in one pass, it returns to model 1 and starts the second round of
training sequentially by each model. This cyclic training process iterates until convergence.
During the interleaving process, each model transfers its knowledge to the next model and
leverages the knowledge shared by the previous model to learn better.

• We formulate interleaving machine learning as a multi-level optimization problem.
• We develop an efficient differentiable algorithm to solve the interleaving learning problem.
• We utilize our interleaving learning framework for neural architecture search on CIFAR-

100, CIFAR-10, and ImageNet. Experimental results strongly demonstrate the effective-
ness of our method.
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3.2 Related Works
The goal of neural architecture search (NAS) is to automatically identify highly-performing neu-
ral architectures that can potentially surpass human-designed ones. NAS research has made
considerable progress in the past few years. Early NAS [76, 105, 106] approaches are based
on reinforcement learning (RL), where a policy network learns to generate high-quality archi-
tectures by maximizing the validation accuracy (as reward). These approaches are conceptually
simple and can flexibly perform search in any search spaces. However, they are computation-
ally very demanding. To calculate the reward of a candidate architecture, this architecture needs
to be trained on a training dataset, which is very time-consuming. To address this issue, dif-
ferentiable search methods [10, 58, 95] have been proposed. In these methods, each candidate
architecture is a combination of many building blocks. The combination coefficients represent
the importance of building blocks. Architecture search amounts to learning these differentiable
coefficients, which can be done using differentiable optimization algorithms such as gradient
descent, with much higher computational efficiency than RL-based approaches. Differentiable
NAS methods started with DARTS [58] and have been improved rapidly since then. For example,
P-DARTS [16] allows the architecture depth to increase progressively during searching. It also
performs search space regularization and approximation to improve stability of searching algo-
rithms and reduce search cost. In PC-DARTS [96], the redundancy of search space exploration
is reduced by sampling sub-networks from a super network. It also performs operation search
in a subset of channels via bypassing the held-out subset in a shortcut. Another paradigm of
NAS methods [57, 78] are based on evolutionary algorithms (EA). In these approaches, architec-
tures are considered as individuals in a population. Each architecture is associated with a fitness
score representing how good this architecture is. Architectures with higher fitness scores have
higher odds of generating offspring (new architectures), which replace architectures that have
low-fitness scores. Similar to RL-based methods, EA-based methods are computationally heavy
since evaluating the fitness score of an architecture needs to train this architecture. Our proposed
interleaving learning framework in principle can be applied to any NAS methods. In our exper-
iments, for simplicity and computational efficiency, we choose to work on differentiable NAS
methods.

3.3 Method
In this section, we present the details of the interleaving learning framework. There are K
learners. Each learner learns to perform a task. These tasks could be the same, e.g., image classi-
fication on CIFAR-10; or different, e.g., image classification on CIFAR-10, image classification
on ImageNet [22], object detection on MS-COCO [55], etc. Each learner k has a training dataset
D

(tr)
k and a validation dataset D(val)

k . Each learner has a data encoder and a task-specific head
performing the target task. For example, if the task is image classification, the data encoder
could be a convolutional neural network extracting visual features of the input images and the
task-specific head could be a multi-layer perceptron which takes the visual features of an image
extracted by the data encoder as input and predicts the class label of this image. We assume the
architecture of the data encoder in each learner is learnable. The data encoders of all learners
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Notation Meaning
K Number of learners
M Number of rounds
D

(tr)
k Training dataset of the k-th learner

D
(val)
k Validation dataset of the k-th learner

A Encoder architecture shared by all learners
W

(m)
k Weight parameters in the data encoder of the k-th learner in the m-th round

H
(m)
k Weight parameters in the task-specific head of the k-th learner in the m-th round

W̃
(m)
k The optimal encoder weights of the k-th learner in the m-th round

H̃
(m)
k The optimal weight parameters of the task-specific head in the k-th learner in the

m-th round
γ Tradeoff parameter

Table 3.1: Notations in interleaving learning

share the same architecture, but their weight parameters could be different in different learners.
The architectures of task-specific heads are manually designed by humans and they could be dif-
ferent in different learners. The K learners perform M rounds of interleaving learning with the
following order:

l1, l2, · · · , lK︸ ︷︷ ︸
Round 1

l1, l2, · · · , lK︸ ︷︷ ︸
Round 2

· · · l1, l2, · · · , lK︸ ︷︷ ︸
Round m

· · · l1, l2, · · · , lK︸ ︷︷ ︸
Round M

(3.2)

where lk denotes that the k-th learner performs learning. In the first round, we first learn l1, then
learn l2, and so on. At the end of the first round, lK is learned. Then we move to the second
round, which starts with learning l1, then learns l2, and so on. This pattern repeats until the M
rounds of learning are finished. Between two consecutive learners lklk+1, the weight parameters
of the latter learner lk+1 are encouraged to be close to the optimally learned encoder weights of
the former learner lk. For each learner, the architecture of its encoder remains the same across
all rounds; the network weights of the encoder and head can be different in different rounds.

Each learner k has the following learnable parameter sets: 1) architecture A of the encoder;
2) in each round m, the learner’s encoder has a set of weight parameters W (m)

k specific to this
round; 3) in each round m, the learner’s task-specific head has a set of weight parameters H(m)

k

specific to this round. The encoders of all learners share the same architecture and this archi-
tecture remains the same in different rounds. The encoders of different learners have different
weight parameters. The weight parameters of a learner’s encoder are different in different rounds.
Different learners have different task-specific heads in terms of both architectures and weight pa-
rameters. In the interleaving process, the learning of the k-th learner is assisted by the (k− 1)-th
learner. Specifically, during learning, the encoder weights Wk of the k-th learner are encouraged
to be close to the optimal encoder weights W̃k−1 of the (k − 1)-th learner. This is achieved by
minimizing the following regularizer : ‖Wk − W̃k−1‖2

2.
There are M ×K learning stages: in each of the M rounds, each of the K learners is learned

in a stage. In the very first learning stage, the first learner in the first round is learned. It trains

31



the weight parameters of its data encoder and the weight parameters of its task-specific head on
its training dataset. The optimization problem is:

W̃
(1)
1 (A) = min

W
(1)
1 ,H

(1)
1
L(A,W

(1)
1 , H

(1)
1 , D

(tr)
1 ). (3.3)

In this optimization problem, A is not learned. Otherwise, a trivial solution of A will be resulted
in. In this trivial solution, A would be excessively large and expressive, and can perfectly overfit
the training data, but will have poor generalization capability on unseen data. After learning, the
optimal head is discarded. The optimal encoder weights W̃ (1)

1 (A) are a function of A since the
training loss is a function of A and W̃1 is a function of the training loss. W̃ (1)

1 (A) is passed to the
next learning stage to help with the learning of the second learner.

In any other learning stage, e.g., the l-th stage where the learner is k and the round of inter-
leaving is m, the optimization problem is:

W̃
(m)
k (A) = min

W
(m)
k ,H

(m)
k

L(A,W
(m)
k , H

(m)
k , D

(tr)
k ) + λ‖W (m)

k − W̃l−1(A)‖2
2,

where ‖W (m)
k − W̃l−1‖2

2 encourages the encoder weights W (m)
k at this stage to be close to the

optimal encoder weights W̃l−1 learned in the previous stage and λ is a tradeoff parameter. The
optimal encoder weights W̃ (m)

k (A) are a function of the encoder architecture A. The encoder
architecture is not updated at this learning stage, for the same reason described above. In the
round of 1 to M − 1, the optimal heads are discarded after learning. In the round of M , the
optimal heads {H̃(M)

k (A)}Kk=1 are retained and will be used in the final learning stage. In the
final stage, each learner evaluates its model learned in the final round M on the validation set.
The encoder architecture A is learned by minimizing the validation losses of all learners. The
corresponding optimization problem is:

minA
K∑
k=1

L(A, W̃
(M)
k (A), H̃

(M)
k (A), D

(val)
k ). (3.4)

To this end, we are ready to formulate the interleaving learning problem using a multi-level
optimization framework, as shown in Eq.(3.5). From bottom to top, the K learners perform M
rounds of interleaving learning. Learners in adjacent learning stages are coupled via ‖Wk −
W̃k−1‖2

2. The architecture A is learned by minimizing the validation loss. Similar to [58], we
represent A in a differentiable way. A is a weighted combination of multiple layers of basic
building blocks such as convolution, pooling, normalization, etc. The output of each building
block is multiplied with a weight indicating how important this block is. During architecture
search, these differentiable weights are learned. After the search process, blocks with large
weights are retained to form the final architecture.
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minA
∑K

k=1 L(A, W̃
(M)
k (A), H̃

(M)
k (A), D

(val)
k )

s.t. Round M:
W̃

(M)
K (A), H̃

(M)
K (A) = min

W
(M)
K ,H

(M)
K

L(A,W
(M)
K , H

(M)
K , D

(tr)
K ) + λ‖W (M)

K − W̃ (M)
K−1(A)‖2

2

· · ·
W̃

(M)
1 (A), H̃

(M)
1 (A) = min

W
(M)
1 ,H

(M)
1

L(A,W
(M)
1 , H

(M)
1 , D

(tr)
1 ) + λ‖W (M)

1 − W̃ (M−1)
K (A)‖2

2

· · ·
Round 2:
W̃

(2)
K (A) = min

W
(2)
K ,H

(2)
K

L(A,W
(2)
K , H

(2)
K , D

(tr)
K ) + λ‖W (2)

K − W̃
(2)
K−1(A)‖2

2

· · ·
W̃

(2)
1 (A) = min

W
(2)
1 ,H

(2)
1

L(A,W
(2)
1 , H

(2)
1 , D

(tr)
1 ) + λ‖W (2)

1 − W̃ (1)
K (A)‖2

2

Round 1:
W̃

(1)
K (A) = min

W
(1)
K ,H

(1)
K

L(A,W
(1)
K , H

(1)
K , D

(tr)
K ) + λ‖W (1)

K − W̃
(1)
K−1(A)‖2

2

· · ·
W̃

(1)
k (A) = min

W
(1)
k ,H

(1)
k

L(A,W
(1)
k , H

(1)
k , D

(tr)
k ) + λ‖W (1)

k − W̃
(1)
k−1(A)‖2

2

· · ·
W̃

(1)
2 (A) = min

W
(1)
2 ,H

(1)
2

L(A,W
(1)
2 , H

(1)
2 , D

(tr)
2 ) + λ‖W (1)

2 − W̃ (1)
1 (A)‖2

2

W̃
(1)
1 (A) = min

W
(1)
1 ,H

(1)
1

L(A,W
(1)
1 , H

(1)
1 , D

(tr)
1 )

(3.5)

3.3.1 Optimization Algorithm
In this section, we develop an optimization algorithm for interleaving learning. For each opti-
mization problem W̃

(m)
k (A) = min

W
(m)
k ,H

(m)
k

L(A,W
(m)
k , H

(m)
k , D

(tr)
k )+λ‖W (m)

k −W̃ (m)
k−1(A)‖2

2

in a learning stage, we approximate the optimal solution W̃ (m)
k (A) by one-step gradient descent

update of the optimization variable W (m)
k :

W̃
(m)
k (A) ≈ W

(m)

k (A) = W
(m)
k − η∇

W
(m)
k

(L(A,W
(m)
k , H

(m)
k , D

(tr)
k ) + λ‖W (m)

k − W̃ (m)
k−1(A)‖2

2).

For W̃ (1)
1 (A), the approximation is:

W̃
(1)
1 (A) ≈ W

(1)

1 (A) = W
(1)
1 − η∇

W
(1)
1
L(A,W

(1)
1 , H

(1)
1 , D

(tr)
1 ). (3.6)

For W̃ (m)
k (A), the approximation is:

W
(m)

k (A) = W
(m)
k − η∇

W
(m)
k
L(A,W

(m)
k , H

(m)
k , D

(tr)
k )− 2ηλ(W

(m)
k −W (m)

k−1(A)), (3.7)

where W
(m)

k−1(A) is the approximation of W̃ (m)
k−1(A). Note that {W (m)

k (A)}K,Mk,m=1 are calculated

recursively, where W
(m)

k (A) is a function of W
(m)

k−1(A), W
(m)

k−1(A) is a function of W
(m)

k−2(A), and
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so on. When m > 1 and k = 1, W
(m)

k−1(A) = W
(m−1)

K (A). For H̃(M)
k (A), the approximation is:

H
(M)

k (A) = H
(M)
k (A)− η∇

H
(M)
k (A)

L(A,W
(M)
k , H

(M)
k , D

(tr)
k ). (3.8)

In the validation stage, we plug the approximations of {W̃ (M)
k (A)}Kk=1 and {H̃(M)

k (A)}Kk=1 into
the validation loss function, calculate the gradient of the approximated objective w.r.t the encoder
architecture A, then update A via:

A← A− η
K∑
k=1

∇AL(A,W
(M)

k (A), H
(M)

k (A), D
(val)
k ). (3.9)

The update steps from Eq.(3.6) to Eq.(3.9) iterate until convergence. The entire algorithm is
summarized in Algorithm 3.

Algorithm 3: Optimization algorithm for interleaving learning
while not converged do

1. Update W̃ (1)
1 (A) using Eq.(3.6)

2. For k = 2 · · ·K, update W̃ (1)
k (A) using Eq.(3.7)

3. For k = 1 · · ·K and m = 2 · · ·M , update W̃ (m)
k (A) using Eq.(3.7)

4. For k = 1 · · ·K, update H̃(M)
k (A) using Eq.(3.8)

5. Update A using Eq.(3.9)
end

3.4 Experiments
In this section, we apply the proposed interleaving ML framework for neural architecture search
in image classification tasks. Following the experimental protocol in [58], each experiment con-
sists of an architecture search phrase and an architecture evaluation phrase. In the search phrase,
an optimal architecture cell is searched by minimizing the validation loss. In the evaluation
phrase, a larger network is created by stacking multiple copies of the optimally searched cell.
This new network is re-trained from scratch and evaluated on the test set. Please refer to the
supplements for more details of hyperparameters, results, and significance tests of results.

3.4.1 Datasets
Three popular image classification datasets are involved in the experiments: CIFAR-10, CIFAR-
100, and ImageNet [22]. CIFAR-10 contains 60K images from 10 classes. CIFAR-100 contains
60K images from 100 classes. ImageNet contains 1.25 million images from 1000 classes. For
CIFAR-10 and CIFAR-100, each of them is split into train/validation/test sets with 25K/25K/10K
images respectively. For ImageNet, it has 1.2M training images and 50K test images.
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3.4.2 Baselines
Our IL framework can be generally used together with any differentiable NAS method. In the
experiments, we apply IL to three widely-used NAS methods: DARTS [58], P-DARTS [16],
and PC-DARTS [96]. The search space of these methods are similar, where the building blocks
include 3×3 and 5×5 (dilated) separable convolutions, 3×3 max pooling, 3×3 average pooling,
identity, and zero. We compare our interleaving framework with a multi-task learning framework
where a shared encoder architecture is searched simultaneously on CIFAR-10 and CIFAR-100:
The formulation is:

minA L(A, W̃100(A), H̃100(A), D
(val)
100 ) + αL(A, W̃10(A), H̃10(A), D

(val)
10 )

s.t. W̃100(A), H̃100(A), W̃10(A), H̃10(A) =

minW100,H100,W10,H10 L(A,W100, H100, D
(tr)
100) + βL(A,W10, H10, D

(tr)
10 )

(3.10)

where W100 and H100 are the encoder weights and classification head for CIFAR-100. W10

and H10 are the encoder weights and classification head for CIFAR-10. D(tr)
100 and D(val)

100 are the
training and validation sets of CIFAR-100. D(tr)

10 and D(val)
10 are the training and validation sets

of CIFAR-10. A is the encoder architecture shared by CIFAR-100 and CIFAR-10. α and β in
Eq.(3.10) are both set to 1.

3.4.3 Experimental Settings
In the interleaving learning framework, we set two learners: one learns to classify CIFAR-10
images and the other learns to classify CIFAR-100 images. Each learner has an image encoder
and a classification head. Encoders of these two learners share the same architecture, whose
search space is the same as that in DARTS/P-DARTS/PC-DARTS. The encoder is a stack of 8
cells, each consisting of 7 nodes. The initial channel number was set to 16. For the learner
on CIFAR-10, the classification head is a 10-way linear classifier. The training and validation
set of CIFAR-10 is used as D(tr)

1 and D
(val)
1 respectively. For the learner on CIFAR-100, the

classification head is a 100-way linear classifier. The training and validation set of CIFAR-100
is used as D(tr)

2 and D
(val)
2 respectively. We set the number of interleaving rounds to 2. The

tradeoff parameter λ in Eq.(3.5) is set to 100. The order of tasks in the interleaving process is:
CIFAR-100, CIFAR-10, CIFAR-100, CIFAR-10.

During architecture search, network weights were optimized using the SGD optimizer with
a batch size of 64, an initial learning rate of 0.025, a learning rate scheduler of cosine decay, a
weight decay of 3e-4, a momentum of 0.9, and an epoch number of 50. The architecture variables
were optimized using the Adam [47] optimizer with a learning rate of 3e-4 and a weight decay
of 1e-3. The rest hyperparameters follow those in DARTS, P-DARTS, and PC-DARTS.

Given the optimally searched architecture cell, we evaluate it individually on CIFAR-10,
CIFAR-100, and ImageNet. For CIFAR-10 and CIFAR-100, we stack 20 copies of the searched
cell into a larger network as the image encoder. The initial channel number was set to 36. We
trained the network for 600 epochs on the combination of the training and validation datasets
where the mini-batch size was set to 96. The experiments were conducted on one Tesla v100
GPU. For ImageNet, similar to [58], we evaluate the architecture cells searched on CIFAR10/100.
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Method Error(%) Param(M) Cost

*ResNet [36] 22.10 1.7 -
*DenseNet [45] 17.18 25.6 -
*PNAS [56] 19.53 3.2 150
*ENAS [76] 19.43 4.6 0.5
*AmoebaNet [78] 18.93 3.1 3150
†DARTS-1st [58] 20.52±0.31 1.8 0.4
*GDAS [25] 18.38 3.4 0.2
*R-DARTS [100] 18.01±0.26 - 1.6
*DARTS− [18] 17.51±0.25 3.3 0.4
†DARTS− [18] 18.97±0.16 3.1 0.4
∆DARTS+ [53] 17.11±0.43 3.8 0.2
*DropNAS [42] 16.39 4.4 0.7
*DARTS-2nd [58] 20.58±0.44 1.8 1.5

MTL-DARTS2nd 18.92±0.17 2.4 3.1
IL-DARTS2nd (ours) 17.12±0.08 2.6 3.2

*P-DARTS [16] 17.49 3.6 0.3
MTL-PDARTS 17.67±0.31 3.5 0.6
IL-PDARTS (ours) 16.14±0.17 3.6 0.6
†PC-DARTS [96] 17.96±0.15 3.9 0.1

MTL-PCDARTS 18.11±0.27 3.9 0.2
IL-PCDARTS (ours) 17.83±0.14 3.8 0.3

Table 3.2: Classification errors on the test set of CIFAR-100, number of model parameters, and
search cost (GPU days). IL-DARTS-2nd denotes that our proposed interleaving learning (IL)
framework is applied to the search space of DARTS-2nd. DARTS-1st and DARTS-2nd means
that first order and second order approximation is used in DARTS’ optimization procedure. Re-
sults marked with * are taken from DARTS− [18]. Methods marked with † were re-run for 10
times with different random initialization. ∆ denotes this algorithm ran for 600 epochs instead
of 2000 epochs in the architecture evaluation stage, to ensure the comparison with other methods
(which all ran for 600 epochs) is fair. Search cost is measured by GPU days on a Tesla v100.

A larger network is formed by stacking 14 copies of the searched cell. The initial channel number
was set to 48. We trained the network for 250 epochs on the 1.2M training images using eight
Tesla v100 GPUs where the batch size was set to 1024. Each IL experiment was repeated for ten
times with different random initialization. Mean and standard deviation of classification errors
obtained from the 10 runs are reported.

3.4.4 Results
Table 3.2 and Table 3.3 show the classification errors on the test sets of CIFAR-100 and CIFAR-
10 respectively, together with the number of model parameters and search costs (GPU days) of
different NAS methods. From these two tables, we make the following observations. First,
when our proposed interleaving learning (IL) framework is applied to different differentiable
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Method Error(%) Param(M) Cost

*DenseNet [45] 3.46 25.6 -
*HierEvol [57] 3.75±0.12 15.7 300
*NAONet-WS [62] 3.53 3.1 0.4
*PNAS [56] 3.41±0.09 3.2 225
*ENAS [76] 2.89 4.6 0.5
*NASNet-A [106] 2.65 3.3 1800
*AmoebaNet-B [78] 2.55±0.05 2.8 3150
*DARTS-1st [58] 3.00±0.14 3.3 0.4
*R-DARTS [100] 2.95±0.21 - 1.6
*GDAS [25] 2.93 3.4 0.2
*SNAS [95] 2.85 2.8 1.5
∆DARTS+ [53] 2.83±0.05 3.7 0.4
*BayesNAS [103] 2.81±0.04 3.4 0.2
*MergeNAS [93] 2.73±0.02 2.9 0.2
*NoisyDARTS [19] 2.70±0.23 3.3 0.4
*ASAP [69] 2.68±0.11 2.5 0.2
*SDARTS [14] 2.61±0.02 3.3 1.3
*DARTS− [18] 2.59±0.08 3.5 0.4
†DARTS− [18] 2.97±0.04 3.3 0.4
*DropNAS [42] 2.58±0.14 4.1 0.6
*FairDARTS [17] 2.54 3.3 0.4
*DrNAS [15] 2.54±0.03 4.0 0.4
*DARTS-2nd [58] 2.76±0.09 3.3 1.5

MTL-DARTS2nd 2.91±0.12 2.4 3.1
IL-DARTS2nd (ours) 2.62±0.04 2.6 3.2

*PC-DARTS [96] 2.57±0.07 3.6 0.1
MTL-PCDARTS 2.63±0.05 3.9 0.2
IL-PCDARTS (ours) 2.55±0.11 3.8 0.3

*P-DARTS [16] 2.50 3.4 0.3
MTL-PDARTS 2.63±0.12 3.5 0.6
IL-PDARTS (ours) 2.51±0.10 3.6 0.6

Table 3.3: Classification errors on the test set of CIFAR-10, number of model parameters,
and search cost. Results marked with * are taken from DARTS− [18], NoisyDARTS [19], and
DrNAS [15]. The rest notations are the same as those in Table 3.2.

NAS methods, the errors of these methods can be greatly reduced. For example, on CIFAR-100,
IL-DARTS2nd (applying IL to DARTS) achieves an average error of 17.12%, which is signifi-
cantly lower than the error of vanilla DARTS-2nd, which is 20.58%. As another example, the
error of P-DARTS on CIFAR-100 is 17.49%; applying IL to P-DARTS, this error is reduced to
16.14%. On CIFAR-10, applying IL to DARTS-2nd reduces the error from 2.76% to 2.62%.
These results demonstrate the effectiveness of interleaving learning. In IL, the encoder trained
on CIFAR-100 is used to initialize the encoder for CIFAR-10. Likewise, the encoder trained
on CIFAR-10 is used to help with the learning of the encoder on CIFAR-100. These two proce-
dures iterates, which enables the learning tasks on CIFAR-100 and CIFAR-10 to mutually benefit
each other. In contrast, in baselines including DARTS-2nd, P-DARTS, and PC-DARTS, the en-
coders for CIFAR-100 and CIFAR-10 are learned separately without interleaving; there is no
mechanism to let the learning on CIFAR-100 benefit the learning on CIFAR-10 and vice versa.
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Method
Top-1 Top-5 Param Cost

Error (%) Error (%) (M) (GPU days)

*Inception-v1 [88] 30.2 10.1 6.6 -
*MobileNet [43] 29.4 10.5 4.2 -
*ShuffleNet 2× (v1) [101] 26.4 10.2 5.4 -
*ShuffleNet 2× (v2) [63] 25.1 7.6 7.4 -
*NASNet-A [106] 26.0 8.4 5.3 1800
*PNAS [56] 25.8 8.1 5.1 225
*MnasNet-92 [89] 25.2 8.0 4.4 1667
*AmoebaNet-C [78] 24.3 7.6 6.4 3150
*SNAS [95] 27.3 9.2 4.3 1.5
*BayesNAS [103] 26.5 8.9 3.9 0.2
*PARSEC [12] 26.0 8.4 5.6 1.0
*GDAS [25] 26.0 8.5 5.3 0.2
*DSNAS [44] 25.7 8.1 - -
*SDARTS-ADV [14] 25.2 7.8 5.4 1.3
*PC-DARTS [96] 25.1 7.8 5.3 0.1
*ProxylessNAS [10] 24.9 7.5 7.1 8.3
*FairDARTS (CIFAR-10) [17] 24.9 7.5 4.8 0.4
*FairDARTS (ImageNet) [17] 24.4 7.4 4.3 3.0
*DrNAS [15] 24.2 7.3 5.2 3.9
*DARTS+ (ImageNet) [53] 23.9 7.4 5.1 6.8
*DARTS− [18] 23.8 7.0 4.9 4.5
*DARTS+ (CIFAR-100) [53] 23.7 7.2 5.1 0.2
*DARTS2nd-CIFAR10 [58] 26.7 8.7 4.7 1.5

MTL-DARTS2nd-CIFAR10/100 26.4 8.5 3.5 3.1
IL-DARTS2nd-CIFAR10/100 (ours) 25.5 8.0 3.8 3.2

*PDARTS-CIFAR10 [16] 24.4 7.4 4.9 0.3
*PDARTS-CIFAR100 [16] 24.7 7.5 5.1 0.3

MTL-PDARTS-CIFAR10/100 25.0 7.9 5.1 0.6
IL-PDARTS-CIFAR10/100 (ours) 24.1 7.1 5.3 0.6

Table 3.4: Top-1 and top-5 classification errors on the test set of ImageNet, number of model
parameters, and search cost (GPU days). Results marked with * were taken from DARTS− [18]
and DrNAS [15]. The rest notations are the same as those in Table 3.2. From top to bottom,
on the first, second, and third block are: 1) networks manually designed by humans; 2) non-
differentiable architecture search methods; and 3) differentiable search methods.

Overall, the improvement achieved by our method on CIFAR-100 is more significant than that
on CIFAR-10. This is probably because CIFAR-10 is a relatively easy dataset for classification
(with 10 classes only), which leaves smaller room for improvement. With 100 classes, CIFAR-
100 is more challenging for classification and can better differentiate the capabilities of different
methods. Second, interleaving learning (IL) performs better than multi-task learning (MTL).
For example, on CIFAR-100, when applied to DARTS-2nd, the error of IL is lower than that
of MTL; this is also the case when applied to P-DARTS and PC-DARTS. On CIFAR-10, when
applied to DARTS-2nd, P-DARTS, and PC-DARTS, IL outperforms MTL as well. In the inner
optimization problem of the MTL formulation, the encoder weightsW100 for CIFAR-100 and the
encoder weights W10 for CIFAR-10 are trained independently without a mechanism of mutually
benefiting each other. In contrast, IL enables W100 and W10 to help each other for better training
via the interleaving mechanism. Third, among all the methods in Table 3.2, our IL-PDARTS
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Figure 3.2: How classification errors on CIFAR-100 and CIFAR-10 change as λ increases.

method achieves the lowest error, which shows that our IL method is highly competitive in push-
ing the limit of the state-of-the-art. Fourth, while our IL method achieves better accuracy, it
does not substantially increase model size (number of parameters) or search cost.

Table 3.4 shows the top-1 and top-5 classification errors on the test set of ImageNet, num-
ber of model parameters, and search cost (GPU days). Similar to the observations made from
Table 3.2 and Table 3.3, the results on ImageNet show the following. First, when applying
our IL framework to DARTS and P-DARTS, the errors of these methods can be greatly re-
duced. For example, IL-DARTS2nd-CIFAR10/100 (applying IL to DARTS-2nd and search-
ing the architecture on CIFAR-10 and CIFAR-100) achieves a top-1 error of 25.5% and top-
5 error of 8.0%; without IL, the top-1 and top-5 error of DARTS2nd-CIFAR10 is 26.7% and
8.7%. As another example, the errors achieved by IL-PDARTS-CIFAR10/100 are much lower
than those of PDARTS-CIFAR100 and PDARTS-CIFAR10. These results further demonstrate
the effectiveness of interleaving learning which enables different tasks to mutually help each
other. Second, interleaving learning (IL) outperforms multi-task learning (MTL). For example,
IL-DARTS2nd-CIFAR10/100 achieves lower errors than MTL-DARTS2nd-CIFAR10/100; IL-
PDARTS-CIFAR10/100 performs better than MTL-PDARTS-CIFAR10/100. These results fur-
ther show that making different tasks help each other in an interleaving and cyclic way is more
advantageous than performing them jointly and simultaneously. Third, while our IL framework
can greatly improve classification accuracy, it does not increase the parameter number and search
cost substantially.

3.4.5 Ablation Studies
We perform ablation studies to check the effectiveness of individual modules in our framework.
In each ablation study, the ablation setting is compared with the full interleaving learning frame-
work.
• Ablation study on the tradeoff parameter λ. We explore how the learners’ performance varies

as the tradeoff parameter λ in Eq.(3.3) increases. For both CIFAR-100 and CIFAR-10, we
randomly sample 5K data from the 25K training and 25K validation data, and use it as a test
set to report performance in this ablation study. The rest 45K data (22.5K training data and
22.5K validation data) is used for architecture search and evaluation. IL is applied to DARTS-
2nd. The number of rounds is set to 2.
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Figure 3.3: How classification errors on CIFAR-100 and CIFAR-10 change as the number of
interleaving rounds M increases.

Method Error (%)
Order 1 (CIFAR-100) 17.12±0.08
Order 2 (CIFAR-100) 17.19±0.14
Order 1 (CIFAR-10) 2.73±0.04
Order 2 (CIFAR-10) 2.79±0.11

Table 3.5: Results for ablation study on the order of tasks. “Order 1” denotes “CIFRA-100,
CIFAR-10, CIFAR-100, CIFAR-10”. “Order 2” denotes “CIFRA-10, CIFAR-100, CIFAR-10,
CIFAR-100”.

• Ablation study on the number of rounds. In this study, we explore how the test error changes
as we increase the number of interleaving rounds M from 1 to 3. The results are reported on
the 5K sampled data. In this experiment, the tradeoff parameter λ is set to 100. IL is applied
to DRATS-2nd.

• Ablation study on the order of tasks. In this study, we explore whether the order of tasks affects
the test error. We experimented two orders (with the number of rounds set to 2): 1) CIFAR-
100, CIFAR-10, CIFAR-100, CIFAR-10; 2) CIFAR-10, CIFAR-100, CIFAR-10, CIFAR-100.
In order 1, classification on CIFAR-100 is performed first; in order 2, classification on CIFAR-
10 is performed first. In this experiment, the tradeoff parameter λ is set to 100.

Figure 7.3 shows how the classification errors on the test sets of CIFAR-100 and CIFAR-10
vary as the tradeoff parameter λ increases. As can be seen, for both datasets, when λ increases
from 10 to 100, the errors decrease. A larger λ encourages a stronger knowledge transfer effect:
the learning of the current learner C is sufficiently influenced by the previous learner P; the well-
trained data encoder of P can effectively help to train the encoder of C, which results in better
classification performance. However, further increasing λ renders the errors to increase. This is
because an excessively large λ will make the encoder of C strongly biased to the encoder of P
while ignoring the specific data patterns in C’s own training data. Since P’s encoder may not be
suitable for representing C’s data, such a bias leads to inferior classification performance.

Figure 3.3 shows how the classification errors on the test sets of CIFAR-100 and CIFAR-10
vary as the number of rounds M increases. For CIFAR-100, when M increases from 1 to 2,
the error is reduced. When M = 1, the interleaving effect is weak: classification on CIFAR-
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100 influences classification on CIFAR-10, but not the other way around. When M = 2, the
interleaving effect is strong: CIFAR-100 influences CIFAR-10 and CIFAR-10 in turn influences
CIFAR-100. This further demonstrates the effectiveness of interleaving learning. Increasing M
from 2 to 3 does not significantly reduce the error further. This is probably because 2 rounds of
interleaving have brought in sufficient interleaving effect. Similar trend is observed in the plot of
CIFAR-10.

Table 3.5 shows the test errors on CIFAR-100 and CIFAR-10 under two different orders. In
order 1, the starting task is classification on CIFAR-100. In order 2, the starting task is classifica-
tion on CIFAR-10. As can be seen, the errors are not affected by the task order significantly. The
reason is that: via interleaving, each task influences the other task at some point in the interleav-
ing sequence; therefore, it does not matter too much regarding which task should be performed
first.

3.5 Conclusions
In this chapter, we propose a novel machine learning framework called interleaving learning
(IL). In IL, multiple tasks are performed in an interleaving fashion where task 1 is performed for
a short while, then task 2 is conducted, then task 3, etc. After all tasks are learned in one round,
the learning goes back to task 1 and the cyclic procedure starts over. These tasks share a data
encoder, whose network weights are trained successively by different tasks in the interleaving
process. Via interleaving, different models transfer their learned knowledge to each other to
better represent data and avoid being stuck in bad local optimums. We propose a multi-level
optimization framework to formulate interleaving learning, where different learning stages are
performed end-to-end. An efficient gradient-based algorithm is developed to solve the multi-level
optimization problem. Experiments of neural architecture search on CIFAR-100 and CIFAR-10
demonstrate the effectiveness of interleaving learning.
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Chapter 4

Learning by Self-Explanation

4.1 Introduction
In humans’ learning practice, a broadly adopted learning skill is self-explanation where stu-
dents explain to themselves a learned topic to achieve better understanding of this topic. Self-
explanation encourages a student to actively digest and integrate prior knowledge and new in-
formation, which helps to fill in the gaps in understanding a topic. It has shown considerable
effectiveness in improving learning outcomes.

A B C
Learner 1

A B C
Learner 2

A B C
Learner 2

B

C

A

B

A

C

Explainer

Predictions

Explanations

Audience

Audience’s
performance

Audience learns
and self-evaluates.

Explainer
re-learns.

Figure 4.1: Illustration of learning by self-explanation. An explainer explains to the audience
regarding how predictions are made. The audience leverages the explanations to learn and eval-
uates itself. Performance of the audience acts as feedback to guide the explainer to re-learn for
giving better explanations. This process repeats until the audience’s performance is good enough.

We are interested in asking: can the explanation-driven learning method be borrowed from
humans to help machines to learn better? Motivated by this inspiration, we propose a novel
machine learning framework called learning by self-explanation (LeaSE) (as illustrated in Fig-
ure 7.1). In this framework, there is an explainer model and an audience model. They both
learn to undertake the same ML task, such as image classification. The explainer has a learnable
architecture and a set of learnable network weights. The audience has a predefined architecture
by human experts and a set of learnable network weights. The goal is to help the explainer to
learn well on the target task. The way to achieve this goal is to encourage the explainer to give
clear explanations to the audience regarding how predictions are made. Intuitively, if a model
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can explain prediction outcomes well, it must have a deep understanding of the prediction task
and can learn better based on this understanding. The learning is organized into four stages. In
the first stage, the explainer trains its network weights by minimizing the prediction loss on its
training dataset, with its architecture fixed. In the second stage, the explainer uses its model
trained in the first stage to make predictions on the training data examples of the audience and
leverages an adversarial attack [27, 34] approach to explain the prediction outcomes. In the third
stage, the audience model combines its training examples and the explainer-made explanations
of prediction outcomes on these examples to train its network weights. In the fourth stage, the
explainer updates its neural architecture by minimizing its validation loss and the audience’s val-
idation loss. The fours stages are synthesized into a unified four-level optimization framework
where they are performed jointly in an end-to-end manner. Each learning stage has an influence
on other stages. We apply our method for neural architecture search in image classification tasks.
Our method achieves significant improvement on CIFAR-100, CIFAR-10, and ImageNet [22].

The major contributions of this section are as follows:
• Drawing inspiration from the explanation-driven learning technique of humans, we pro-

pose a novel machine learning approach called learning by self-explanation (LeaSE). In
our approach, an explainer model improves its learning ability by trying to clearly explain
to an audience model regarding how the prediction outcomes are made.

• We develop a multi-level optimization framework to formulate LeaSE which involves four
stages of learning: explainer learns; explainer explains; audience learns; explainer re-
learns based on the audience’s performance.

• We develop an efficient algorithm to solve the LeaSE problem.
• We apply LeaSE for neural architecture search on CIFAR-100, CIFAR-10, and ImageNet,

where the results demonstrate the effectiveness of our method.

4.2 Related Works

4.2.1 Neural Architecture Search (NAS)
In the past few years, a wide variety of NAS methods have been proposed and achieved consid-
erable success in automatically identifying highly-performing architectures of neural networks
for the sake of reducing the reliance on human experts. Early NAS approaches [76, 105, 106] are
mostly based on reinforcement learning (RL) which use a policy network to generate architec-
tures and evaluate these architectures on validation set. The validation loss is used as a reward
to optimize the policy network and train it to produce high-quality architectures. While RL-
based approaches achieve the first wave of success in NAS research, they are computationally
very expensive since evaluating the architectures requires a heavy-duty training process. This
limitation renders RL-based approaches not applicable for most users who do not have enough
computational resources. To address this issue, differentiable search methods [10, 58, 95] have
been proposed, which parameterize architectures as differentiable functions and perform search
using efficient gradient-based methods. In these methods, the search space of architectures is
composed of a large set of building blocks where the output of each block is multiplied with a
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smooth variable indicating how important this block is. Under such a formulation, search be-
comes solving a mathematical optimization problem defined on the importance variables where
the objective is to find out an optimal set of variables that yield the lowest validation loss. This
optimization problem can be solved efficiently using gradient-based methods. Differentiable
NAS research is initiated by DARTS [58] and further improved by subsequent works such as
P-DARTS [16], PC-DARTS [96], etc. P-DARTS [16] grows the depth of architectures progres-
sively in the search process. PC-DARTS [96] samples sub-architectures from a super network
to reduce redundancy during search. Our proposed LeaSE framework is orthogonal to existing
NAS methods and can be used in combination with any differentiable NAS method to further im-
prove these methods. Such et al. [87] proposed to learn a generative model to generate synthetic
examples which are used to search the architecture of an auxiliary model. Our work differs from
this one in that: 1) we focus on searching the architecture of a primary model (the explainer)
by letting it explain to an auxiliary model (the audience) while [87] focuses on searching the
architecture of the auxiliary model; 2) our primary model produces explanations via adversarial
attack while the generative model in [87] generates synthetic examples. Besides RL-based ap-
proaches and differentiable NAS, another paradigm of NAS methods [57, 78] are based on the
evolutionary algorithm. In these methods, architectures are formulated as individuals in a popu-
lation. High-quality architectures produce offspring to replace low-quality architectures, where
the quality is measured using fitness scores. Similar to RL-based approaches, these methods also
require considerable computing resources.

4.2.2 Interpretable Machine Learning
The explainability and transparency of machine learning models is crucial for mission-critical
applications. Many approaches have been proposed for understanding the predictions made by
black-box models. Many prior approaches for interpretable ML focus on finding out key evi-
dence from the input data (such as phrases in texts and regions in images) that is most relevant
to a prediction, then using these evidence to justify the meaningfulness of the prediction. In [99]
and [104], the authors perform perturbation on the input data elements (e.g., pixels) and check
which perturbed elements cause more changes of the output. Such elements are considered to be
more relevant to the output and are used as explanations. In [3, 85] and [86], the authors identify
the contribution of each input feature to the output prediction by propagating the contribution
through layers of a deep neural network. Another body of works [51, 67, 97] are based on the
idea of attention. While training the prediction model, an attention network is trained to calculate
an attention score for each input data element. Elements with large attention scores are used as
explanations. In [97], attention mechanisms are used to select important words and sentences
for interpreting hierarchical recurrent networks. Mullenbach et al. [67] leverage attention net-
works for explaining convolution networks. In addition, another widely adopted idea is to use
simple but more interpretable models to interpret expressive black-box models. For example,
in LIME [80], an interpretable linear model is used to approximate the decision boundary of a
black-box model at an interested instance and interpretation is performed by checking dominant
features in the linear model. Our work differs from these existing works in that: existing works
focus on interpreting a trained model while our method focuses on improving the training of a
model by letting it explain. In other words, the goal of existing works is explaining while that of
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Notation Meaning
A Architecture of the explainer
E Network weights of the explainer
W Network weights of the audience
δ Explanations
D

(tr)
e Training data of the explainer

D
(tr)
a Training data of the audience

D
(val)
e Validation data of the explainer

D
(val)
a Validation data of the audience

Table 4.1: Notations in Learning by Self-Explanation

our work is learning. The interpretation module (in the second stage) in our framework can be
any model-interpretation method.

The concept of self-explanation was investigated in [26], which calculates confidence levels
for decisions and explanations based on mutual information. Different from our work, this work
does not leverage self-explanation to improve model training. Alvarez-Melis and Jaakkola [1]
proposed a self-explaining network (SEN) which simultaneously outputs predictions and expla-
nations. Our work differs from this one in that: our work uses the explanations generated by
model A to train model B where B’s validation performance reflects how good A’s explanations
are; the training of A is continuously improved so that it can generate good explanations. Lever-
aging another model to evaluate the quality of explanations made by one model is more robust
and overfitting-resilient. In contrast, SEN learns to make predictions and explains prediction
results in a single model, where the explanations may not be able to generalize in other mod-
els. Explanation-based learning [21, 65] has been investigated in logic-based AI systems. These
approaches require manual design of logic rules, which are not scalable.

4.3 Methods
In this section, we propose a four-level optimization framework to formulate learning by self-
explanation (LeaSE) (as shown in Figure 7.2) and develop an optimization algorithm to solve the
four-level optimization problem.

4.3.1 Learning by Self-Explanation
In the LeaSE framework, there is an explainer model and an audience model, both of which
learn to perform the same target task. The primary goal of our framework is to help the explainer
to learn the target task very well. The way to achieve this goal is to let the explainer make
meaningful explanations of the prediction outcomes in the target task. The intuition behind
LeaSE is: to correctly explain prediction results, a model needs to learn to understand the target
task very well. The explainer has a learnable architecture A and a set of learnable network
weights E. The audience has a pre-defined neural architecture (by human experts) and a set of
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Figure 4.2: Learning by self-explanation. Following the solid arrows, predictions are made
and training/validation losses are calculated. Following the dotted arrows, gradient updates of
network weights and architecture variables are calculated and weights/architecture are updated.

learnable network weights W . The learning is organized into four stages. In the first stage, the
explainer trains its network weights E on its training dataset D(tr)

e , with the architecture fixed:

E∗(A) = minE L(E,A,D(tr)
e ). (4.1)

To define the training loss, we need to use the architecture A together with network weights W
to make predictions on training examples. However, A cannot be updated by minimizing the
training loss. Otherwise, a trivial solution of A will be yielded: A is very large and complex
that it can perfectly overfit the training data but will make largely incorrect predictions on novel
data examples. Note that E∗(A) is a function of A for that L(E,A,D

(tr)
e ) is a function of A

and E∗(A) depends on L(E,A,D
(tr)
e ). In the second stage, the explainer uses the trained model

E∗(A) to make predictions on the input training examples D(tr)
a of the audience and explains the

prediction outcomes. Specifically, given an input data example x (without loss of generality, we
assume it is an image) and the predicted label y, the explainer aims to find out a subset of image
patches P in x that are mostly correlated with y and uses P as explanations for y. We leverage an
adversarial attack approach [27, 34] to achieve this goal. Adversarial attack adds small random
perturbations δ to pixels in x so that the prediction outcome on the perturbed image x + δ is no
longer y. Pixels that are perturbed more have higher correlations with the prediction outcome
y and can be used as explanations. This process amounts to solving the following optimization
problem:

∆∗(E∗(A)) = max∆

N∑
i=1

`(f(xi + δi;E
∗(A)), f(xi;E

∗(A))) (4.2)
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where ∆ = {δi}Ni=1 and δi is the perturbation added to image xi. f(xi + δi;E
∗(A)) and

f(xi;E
∗(A)) are the prediction outcomes of the explainer’s network f(·;E∗(A)) on xi + δi

and xi. Without loss of generality, we assume the task is image classification (with K classes).
Then f(xi + δi;E

∗(A)) and f(xi;E
∗(A)) are both K-dimensional vectors containing prediction

probabilities on the K classes. `(·, ·) is the cross-entropy loss with `(a,b) = −
∑K

k=1 bi log ai.
In this optimization problem, the explainer aims to find out perturbations for each image so that
the predicted outcome on the perturbed image is largely different from that on the original image.
The learned optimal perturbations are used as explanations and those with larger values indicate
that the corresponding pixels are more important in decision-making. ∆∗(E∗(A)) is a function
of E∗(A) since ∆∗(E∗(A)) is a function of the objective in Eq.(4.2) and the objective is a func-
tion of E∗(A). In the third stage, given the explanations ∆∗(E∗(A)) made by the explainer, the
audience leverages them to learn the target task. Since the perturbations indicate how impor-
tant the input pixels are, the audience uses them to reweigh the pixels: x � δ, where � denotes
element-wise multiplication. Pixels that are more important are given more weights. Then the
audience trains its network weights on these weighted images:

W ∗(∆∗(E∗(A))) = minW
N∑
i=1

`(f(δ∗i (E
∗(A))� xi;W ), ti), (4.3)

where f(δ∗i (E
∗(A)) � xi;W ) is the prediction outcome of the audience’s network f(·;W ) on

the weighted image δ∗i (E
∗(A)) � xi and ti is the class label. W ∗(∆∗(E∗(A))) is a function of

∆∗(E∗(A)) since W ∗(∆∗(E∗(A))) is a function of the objective in Eq.(4.3) and the objective is
a function of ∆∗(E∗(A)). In the fourth stage, the explainer validates its network weights E∗(A)

on its validation set D(val)
e and the audience validates its network weights W ∗(∆∗(E∗(A))) on its

validation set D(val)
a . The explainer optimizes its architecture by minimizing its validation loss

and the audience’s validation loss:

minA L(E∗(A), A,D(val)
e ) + γL(W ∗(∆∗(E∗(A))), D(val)

a ), (4.4)

where γ is a tradeoff parameter.
We integrate the four stages in a unified four-level optimization framework and obtain the

following formulation of LeaSE:

min
A

L(E∗(A), A,D
(val)
e ) + γL(W ∗(∆∗(E∗(A))), D

(val)
a )

s.t. W ∗(∆∗(E∗(A))) = min
W

N∑
i=1

`(f(δ∗i (E
∗(A))� xi;W ), ti)

∆∗(E∗(A)) = max
∆

N∑
i=1

`(f(xi + δi;E
∗(A)), f(xi;E

∗(A)))

E∗(A) = min
E

L(E,A,D
(tr)
e ).

(4.5)

In this framework, there are four optimization problems, each corresponding to a learning stage.
From bottom to up, the optimization problems correspond to learning stage 1, 2, 3, and 4 re-
spectively. The first three optimization problems are nested on the constraint of the fourth opti-
mization problem. These four stages are conducted end-to-end in this unified framework. The
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solution E∗(A) obtained in the first stage is used to perform explanation in the second stage. The
explanations ∆∗(E∗(A)) obtained in the second stage are used to train the model in the third
stage. The solutions obtained in the first and third stage are used to make predictions on the
fourth stage. The architecture A updated in the fourth stage changes the training loss in the first
stage and consequently changes the solution E∗(A), which subsequently changes ∆∗(E∗(A))
and W ∗(∆∗(E∗(A))). Following [58], we perform differentiable search on A in a search space
composed of candidate building blocks. Searching amounts to selecting a subset of candidate
blocks by learning a selection variable for each block. The selection variables indicate the im-
portance of individual blocks and are differentiable.

4.3.2 Optimization Algorithm
We develop an efficient algorithm to solve the LeaSE problem. Getting insights from [58], we
calculate the gradient of L(E,A,D

(tr)
e ) w.r.t E and approximate E∗(A) using one-step gradient

descent update ofE. We plug the approximationE ′ ofE∗(A) into
∑N

i=1 `(f(xi+δi;E
∗(A)), f(xi;E

∗(A)))
and obtain an approximated objective denoted by O∆. Then we approximate ∆∗(E∗(A)) us-
ing one-step gradient descent update of ∆ based on the gradient of O∆. Next, we plug the
approximation ∆′ of ∆∗(E∗(A)) into

∑N
i=1 `(f(δ∗i (E

∗(A)) � xi;W ), ti) and get another ap-
proximated objective denoted by OW . Then we approximate W ∗(∆∗(E∗(A))) using one-step
gradient descent update of W based on the gradient of OW . Finally, we plug the approxima-
tion E ′ of E∗(A) and the approximation W ′ of W ∗(∆∗(E∗(A))) into L(E∗(A), A,D

(val)
e ) +

γL(W ∗(∆∗(E∗(A))), D
(val)
a ) and get the third approximated objective denoted by OA. A is up-

dated by descending the gradient of OA. In the sequel, we use∇2
Y,Xf(X, Y ) to denote ∂f(X,Y )

∂X∂Y
.

First of all, we approximate E∗(A) using

E ′ = E − ξe∇EL(E,A,D(tr)
e ) (4.6)

where ξe is a learning rate. Plugging E ′ into
∑N

i=1 `(f(xi + δi;E
∗(A)), f(xi;E

∗(A))), we ob-
tain an approximated objective O∆ =

∑N
i=1 `(f(xi + δi;E

′), f(xi;E
′)). Then we approximate

∆∗(E∗(A)) using one-step gradient descent update of ∆ with respect to O∆:

∆′ = ∆− ξ∆∇∆(
N∑
i=1

`(f(xi + δi;E
′), f(xi;E

′))). (4.7)

Plugging ∆′ into
∑N

i=1 `(f(δ∗i (E
∗(A))�xi;W ), ti), we obtain an approximated objectiveOW =∑N

i=1 `(f(δ′i � xi;W ), ti). Then we approximate W ∗(∆∗(E∗(A))) using one-step gradient de-
scent update of W with respect to OW :

W ′ = W − ξW∇w(
N∑
i=1

`(f(δ′i � xi;W ), ti)). (4.8)

Finally, we plug E ′ and W ′ into L(E∗(A), D
(val)
e ) + γL(W ∗(∆∗(E∗(A))), D

(val)
a ) and get OA =

L(E ′, D
(val)
e ) + γL(W ′, D

(val)
a ). We can update the explainer’s architecture A by descending the
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gradient of OA w.r.t A:

A← A− η(∇AL(E ′, D
(val)
e ) + γ∇AL(W ′, D

(val)
a )) (4.9)

where
∇AL(E ′, A,D

(val)
e ) =

∇AL(E − ξe∇EL(E,A,D
(tr)
e ), A,D

(val)
e ) =

−ξe∇2
A,EL(E,A,D

(tr)
e )∇E′L(E ′, A,D

(val)
e ) +∇AL(E ′, A,D

(val)
e )

(4.10)

The first term in the third line involves expensive matrix-vector product, whose computational
complexity can be reduced by a finite difference approximation:

∇2
A,EL(E,A,D

(tr)
e )∇E′L(E ′, A,D

(val)
e ) ≈ 1

2α
(∇AL(E+, A,D

(tr)
e )−∇AL(E−, A,D

(tr)
e )),

(4.11)
where E± = E ± α∇E′L(E ′, A,D

(val)
e ) and α is a small scalar that equals 0.01/‖∇E′L(E ′, A,

D
(val)
e )‖2.

For ∇AL(W ′, D
(val)
a ) in Eq.(7.10), it can be calculated as ∂E′

∂A
∂∆′

∂E′
∂W ′

∂∆′
∇W ′L(W ′, D

(val)
a ) ac-

cording to the chain rule, where

∂W ′

∂∆′
=
∂(W − ξw∇W (

∑N
i=1 `(f(δ′i � xi;W ), ti)))

∂∆′
(4.12)

= −ξW∇2
∆′,W (

N∑
i=1

`(f(δ′i � xi;W ), ti)), (4.13)

∂∆′

∂E ′
=

∂(∆− ξ∆∇∆(
N∑
i=1

`(f(xi + δi;E
′), f(xi;E

′))))

∂E ′
(4.14)

= −ξ∆∇2
E′,∆(

N∑
i=1

`(f(xi + δi;E
′), f(xi;E

′))), (4.15)

and

∂E ′

∂A
=
∂(E − ξe∇EL(E,A,D

(tr)
e ))

∂A
(4.16)

= −ξe∇2
A,EL(E,A,D(tr)

e ). (4.17)

This algorithm is summarized in Algorithm 7.

4.4 Experiments
In the experiments, we apply our proposed LeaSE framework to perform neural architecture
search for image classification. Each experiment consists of two phrases: architecture search
and evaluation. In the search phrase, an optimal cell is identified. In the evaluation phrase,
multiple copies of the optimal cell are stacked into a larger network, which is retrained from
scratch. Please refer to the supplements for more hyperparameter settings, additional results, and
significant tests of results.
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Algorithm 4: Optimization algorithm for learning by self-explanation
while not converged do

1. Update the explainer’s weights E
2. Update the explanations ∆
2. Update the audience’s weights W
3. Update the explainer’s architecture

end

4.4.1 Datasets
The experiments are performed on three datasets, including CIFAR-10, CIFAR-100, and Ima-
geNet [22]. Both CIFAR-10 and CIFAR-100 contain 60K images from 10 classes (each class
has the same number of images). For each of them, we split it into a training set with 25K
images, a validation set with 25K images, and a test set with 10K images. During architecture
search in LeaSE, the training set is used as D(tr)

e and D(tr)
a and the validation set is used as D(val)

e

and D(val)
a . During architecture evaluation, the composed large network is trained on the combi-

nation of D(tr)
e and D(tr)

a . ImageNet contains 1.2M training images and 50K test images, coming
from 1000 objective classes. Performing architecture search on the 1.2M images is computation-
ally too costly. To address this issue, following [96], we randomly sample 10% images from the
1.2M images to form a new training set and another 2.5% images to form a validation set, then
perform search on them. During architecture evaluation, the composed large network is trained
on the entire set of 1.2M images.

4.4.2 Experimental Settings
Our framework is orthogonal to existing NAS approaches and can be applied to any differen-
tiable NAS method. In the experiments, LeaSE was applied to DARTS [58], P-DARTS [16],
and PC-DARTS [96]. The search spaces of these methods are composed of (dilated) separable
convolutions with sizes of 3 × 3 and 5 × 5, max pooling with size of 3 × 3, average pooling
with size of 3 × 3, identity, and zero. Each LeaSE experiment was repeated for ten times with
different random seeds. The mean and standard deviation of classification errors obtained from
the 10 runs are reported.

During architecture search, for CIFAR-10 and CIFAR-100, the architecture of the explainer
is a stack of 8 cells. Each cell consists of 7 nodes. We set the initial channel number to 16. For the
architecture of the audience model, we experimented with ResNet-18 and ResNet-50 [37]. We set
the tradeoff parameter γ to 1. The search algorithm was based on SGD, with a batch size of 64, an
initial learning rate of 0.025 (reduced in later epochs using a cosine decay scheduler), an epoch
number of 50, a weight decay of 3e-4, and a momentum of 0.9. The rest of hyperparameters
mostly follow those in DARTS, P-DARTS, and PC-DARTS.

During architecture evaluation, for CIFAR-10 and CIFAR-100, a larger network of the ex-
plainer is formed by stacking 20 copies of the searched cell. The initial channel number was
set to 36. We trained the network with a batch size of 96, an epoch number of 600, on a single
Tesla v100 GPU. On ImageNet, we evaluate two types of architectures: 1) those searched on a
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Method Error(%) Param(M) Cost

*ResNet [36] 22.10 1.7 -
*DenseNet [45] 17.18 25.6 -
*PNAS [56] 19.53 3.2 150
*ENAS [76] 19.43 4.6 0.5
*AmoebaNet [78] 18.93 3.1 3150
*GDAS [25] 18.38 3.4 0.2
*R-DARTS [100] 18.01±0.26 - 1.6
*DARTS− [18] 17.51±0.25 3.3 0.4
†DARTS− [18] 18.97±0.16 3.1 0.4
∆DARTS+ [53] 17.11±0.43 3.8 0.2
*DropNAS [42] 16.39 4.4 0.7
†DARTS-1st [58] 20.52±0.31 3.5 1.0

LeaSE-RN18-DARTS1st (ours) 17.04±0.10 3.6 1.1
LeaSE-RN50-DARTS1st (ours) 16.87±0.08 3.6 1.2

*DARTS-2nd [58] 20.58±0.44 3.5 1.5
LeaSE-RN18-DARTS2nd (ours) 16.80±0.17 3.7 1.7
LeaSE-RN50-DARTS2nd (ours) 16.39±0.07 3.6 1.9
†PC-DARTS [96] 17.96±0.15 3.9 0.1

LeaSE-RN18-PCDARTS (ours) 16.39±0.21 4.0 0.5
LeaSE-RN50-PCDARTS (ours) 16.17±0.05 3.9 0.7

*P-DARTS [16] 17.49 3.6 0.3
LeaSE-RN18-PDARTS (ours) 15.23±0.11 3.7 0.8
LeaSE-RN50-PDARTS (ours) 15.13±0.07 3.6 1.0

Table 4.2: Test error on CIFAR-100, number of model weights (millions), and search cost (GPU
days on a Tesla v100). DARTS-1st and DARTS-2nd represents that first-order and second-order
approximation is used in DARTS’ optimization algorithm. LeaSE-R18-DARTS1st represents
that the manually-designed architecture in the audience model is ResNet-18 and the search space
is the same as that in DARTS-1st. Similar meanings hold for other notations in such a format.
R50 denotes ResNet-50. Results marked with * are obtained from DARTS− [18]. Methods
marked with † were re-run for 10 times. For DARTS+ marked with ∆, we ran it for 600 epochs
instead of 2000 epochs (used in [53]) in the architecture evaluation stage, to ensure the compari-
son with other methods (running 600 epochs) is fair.

subset of ImageNet; 2) those searched on CIFAR-10 or CIFAR-100. In either type, 14 copies of
optimally searched cells are stacked into a large network, which was trained using eight Tesla
v100 GPUs on the 1.2M training images, with a batch size of 1024 and an epoch number of 250.
Initial channel number was set to 48.

4.4.3 Results
Table 6.2 shows the results on CIFAR-100, including classification errors on the test set, number
of model parameters, and search cost. By comparing different methods, we make the following
observations. First, applying LeaSE to different NAS methods, including DARTS, P-DARTS,
and PC-DARTS, the classification errors of these methods are greatly reduced. For example, the
original error of DARTS-2nd is 20.58%; when LeaSE is applied, this error is significantly re-
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Method Error(%) Param(M) Cost

*DenseNet [45] 3.46 25.6 -
*HierEvol [57] 3.75±0.12 15.7 300
*NAONet-WS [62] 3.53 3.1 0.4
*PNAS [56] 3.41±0.09 3.2 225
*ENAS [76] 2.89 4.6 0.5
*NASNet-A [106] 2.65 3.3 1800
*AmoebaNet-B [78] 2.55±0.05 2.8 3150
*R-DARTS [100] 2.95±0.21 - 1.6
*GDAS [25] 2.93 3.4 0.2
*GTN [87] 2.92±0.06 8.2 0.67
*SNAS [95] 2.85 2.8 1.5
∆DARTS+ [53] 2.83±0.05 3.7 0.4
*BayesNAS [103] 2.81±0.04 3.4 0.2
*MergeNAS [93] 2.73±0.02 2.9 0.2
*NoisyDARTS [19] 2.70±0.23 3.3 0.4
*ASAP [69] 2.68±0.11 2.5 0.2
*SDARTS [14] 2.61±0.02 3.3 1.3
*DARTS− [18] 2.59±0.08 3.5 0.4
†DARTS− [18] 2.97±0.04 3.3 0.4
*DropNAS [42] 2.58±0.14 4.1 0.6
*PC-DARTS [96] 2.57±0.07 3.6 0.1
*FairDARTS [17] 2.54 3.3 0.4
*DrNAS [15] 2.54±0.03 4.0 0.4
*DARTS-1st [58] 3.00±0.14 3.3 0.4

LeaSE-R18-DARTS1st (ours) 2.85±0.09 3.4 0.6
LeaSE-R50-DARTS1st (ours) 2.76±0.03 3.3 0.7

*DARTS-2nd [58] 2.76±0.09 3.3 1.5
LeaSE-R18-DARTS2nd (ours) 2.59±0.06 3.3 1.5
LeaSE-R50-DARTS2nd (ours) 2.52±0.04 3.4 1.7

*PC-DARTS [96] 2.57±0.07 3.6 0.1
LeaSE-R18-PC-DARTS (ours) 2.50±0.04 3.7 0.4
LeaSE-R50-PC-DARTS (ours) 2.48±0.02 3.7 0.5

*P-DARTS [16] 2.50 3.4 0.3
LeaSE-R18-PDARTS (ours) 2.45±0.03 3.4 0.8
LeaSE-R50-PDARTS (ours) 2.44±0.03 3.4 1.0

Table 4.3: Test error on CIFAR-10, number of model weights (millions), and search cost (GPU
days on a Tesla v100). Results marked with * are obtained from DARTS− [18], NoisyDARTS
[19], and DrNAS [15]. The rest notations are the same as those in Table 6.2.

duced to 16.39%. As another example, after applying LeaSE to PC-DARTS, the error is reduced
from 17.96% to 16.17%. Similarly, with the help of LeaSE, the error of P-DARTS is decreased
from 17.49% to 15.13%. These results strongly demonstrate the broad effectiveness of our frame-
work in searching better neural architectures. The reason behind this is: in our framework, the
explanations made by the explainer are used to train the audience model; the validation perfor-
mance of the audience reflects how good the explanations are; to make good explanations, the
explainer’s model has to be trained well; driven by the goal of helping the audience to learn well,
the explainer continuously improves the training of itself. Such an explanation-driven learning
mechanism is lacking in baseline methods, which are hence inferior to our method. Second, an
audience model with a more expressive architecture can help the explainer to learn better. We
experimented with two architectures for the audience model: ResNet with 18 layers (RN18) and
ResNet with 50 layers (RN50), where RN50 is more expressive than RN18 since it has more lay-
ers. As can be seen, in LeaSE applied to DARTS, PC-DARTS, and P-DARTS, using RN50 as the
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Method
Top-1 Top-5 Param Cost

Error (%) Error (%) (M) (GPU days)

*Inception-v1 [88] 30.2 10.1 6.6 -
*MobileNet [43] 29.4 10.5 4.2 -
*ShuffleNet 2× (v1) [101] 26.4 10.2 5.4 -
*ShuffleNet 2× (v2) [63] 25.1 7.6 7.4 -
*NASNet-A [106] 26.0 8.4 5.3 1800
*PNAS [56] 25.8 8.1 5.1 225
*MnasNet-92 [89] 25.2 8.0 4.4 1667
*AmoebaNet-C [78] 24.3 7.6 6.4 3150
*SNAS-CIFAR10 [95] 27.3 9.2 4.3 1.5
*BayesNAS-CIFAR10 [103] 26.5 8.9 3.9 0.2
*PARSEC-CIFAR10 [12] 26.0 8.4 5.6 1.0
*GDAS-CIFAR10 [25] 26.0 8.5 5.3 0.2
*DSNAS-ImageNet [44] 25.7 8.1 - -
*SDARTS-ADV-CIFAR10 [14] 25.2 7.8 5.4 1.3
*PC-DARTS-CIFAR10 [96] 25.1 7.8 5.3 0.1
*ProxylessNAS-ImageNet [10] 24.9 7.5 7.1 8.3
*FairDARTS-CIFAR10 [17] 24.9 7.5 4.8 0.4
*FairDARTS-ImageNet [17] 24.4 7.4 4.3 3.0
*DrNAS-ImageNet [15] 24.2 7.3 5.2 3.9
*DARTS+-ImageNet [53] 23.9 7.4 5.1 6.8
*DARTS−-ImageNet [18] 23.8 7.0 4.9 4.5
*DARTS+-CIFAR100 [53] 23.7 7.2 5.1 0.2
*DARTS2nd-CIFAR10 [58] 26.7 8.7 4.7 1.5

LeaSE-R18-DARTS2nd-CIFAR10 (ours) 24.7 8.3 4.8 1.5
*PDARTS (CIFAR10) [16] 24.4 7.4 4.9 0.3

LeaSE-R18-PDARTS-CIFAR10 (ours) 23.8 6.7 5.0 0.8
*PDARTS (CIFAR100) [16] 24.7 7.5 5.1 0.3

LeaSE-R18-PDARTS-CIFAR100 (ours) 23.9 6.7 5.1 0.8
*PCDARTS-ImageNet [96] 24.2 7.3 5.3 3.8

LeaSE-R18-PCDARTS-ImageNet (ours) 22.1 6.0 5.5 4.0

Table 4.4: Top-1 and top-5 classification errors on the test set of ImageNet, number of model
parameters (millions) and search cost (GPU days). Results marked with * are obtained from
DARTS− [18] and DrNAS [15]. The rest notations are the same as those in Table 6.2. From
top to bottom, on the first three blocks are 1) networks manually designed by humans; 2) non-
gradient based NAS methods; and 3) gradient-based NAS methods.

audience achieves better performance than using RN18. For example, LeaSE-R50-DARTS2nd
achieves an error of 16.39%, which is lower than the 16.80% error of LeaSE-R18-DARTS2nd.
When replacing the audience’s architecture from RN18 to RN50, the error of LeaSE-DARTS1st
is reduced from 17.04% to 16.87%, the error of LeaSE-PCDARTS is reduced from 16.39% to
16.17%, and the error of LeaSE-PDARTS is reduced from 15.23% to 15.13%. The reason is that
to help a stronger audience to learn better, the explainer has to be even stronger. For a stronger
audience model, it already has great capability in achieving excellent classification performance.
To further improve this audience, the explanations used to train this audience need to be very
sensible and informative. To generate such explanations, the explainer has to force itself to learn
very well. Third, our LeaSE-RN50-PDARTS method achieves the lowest error among all meth-
ods listed in this table, which indicates that our method is very competitive in driving the field
of NAS research to a new state-of-the-art. Fourth, the performance gain of our method does
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not come at a cost of substantially increasing model size and search cost: the number of model
parameters in architectures searched by our methods are at a similar level compared with those
by other methods; so are the search costs.

In Table 6.3, we show the results on CIFAR-10, including classification errors on the test
set, number of model parameters, and search cost. The observations made from this table are
similar to those from Table 6.2. First, with the help of our LeaSE framework, the classification
errors of DARTS, PC-DARTS, and P-DARTS are all reduced. For example, applying LeaSE
to DARTS-2nd manages to reduce the error of DARTS-2nd from 2.76% to 2.52%. As another
example, applying LeaSE to P-DARTS decreases the error from 2.50% to 2.44%. This fur-
ther demonstrates the effectiveness of explanation-driven learning. Second, an audience with a
stronger architecture helps the explainer to learn better. For example, in LeaSE-DARTS, LeaSE-
PDARTS, and LeaSE-PCDARTS, when the audience is set to RN50, the performance is better,
compared with setting the audience to RN18. Third, our method LeaSE-R50-PDARTS achieves
the lowest error among all methods in this table, which further demonstrates its great potential
in continuously pushing the limit of NAS research. Fourth, while the architectures searched by
our framework yield better performance, their model size and search cost are not substantially
increased compared with baselines.

In Table 6.4, we compare different methods on ImageNet, in terms of top-1 and top-5 clas-
sification errors on the test set, number of model parameters, and search cost. In experiments
based on PC-DARTS, the architectures are searched on a subset of ImageNet. In other experi-
ments, the architectures are searched on CIFAR-10 and CIFAR-100. LeaSE-R18-DARTS2nd-
CIFAR10 denotes that LeaSE is applied to DARTS-2nd and performs search on CIFAR10, with
the audience model set to ResNet-18. Similar meanings hold for other notations in such a for-
mat. The observations made from these results are consistent with those made from Table 6.2
and Table 6.3. The architectures searched using our methods are consistently better than those
searched by corresponding baselines. For example, LeaSE-R18-DARTS2nd-CIFAR10 achieves
lower top-1 and top-5 errors than DARTS2nd-CIFAR10. LeaSE-R18-PDARTS-CIFAR10 out-
performs PDARTS-CIFAR10. These results again show that by explaining well, a model can
gain better predictive performance. The model size and search cost of architectures searched by
our methods are on par with those in other methods, which demonstrates that the performance
gain of our framework is obtained without sacrificing compactness of architectures or compu-
tational efficiency substantially. Among all the methods in this table, our method LeaSE-R18-
PCDARTS-ImageNet achieves the lowest top-1 and top-5 errors, which further demonstrates the
great effectiveness of our method.

4.4.4 Ablation Studies
In this section, we perform ablation studies to investigate the importance of individual compo-
nents in our framework. In each ablation study, we compare the ablation setting with the full
framework. Specifically, we study the following ablation settings.
• Ablation setting 1. In this setting, the explainer updates its architecture by minimizing the

validation loss of the audience only, without considering the validation loss of itself. The
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Method Error (%)
Audience only (CIFAR-100) 16.08±0.15
Audience + explainer (CIFAR-100) 15.23±0.11
Audience only (CIFAR-10) 2.72±0.07
Audience + explainer (CIFAR-10) 2.59±0.06

Table 4.5: Results for ablation setting 1. “Audience only” means that only the audience’s valida-
tion loss is minimized to update the architecture of the explainer. “Audience + explainer” means
that both the validation loss of the audience and the validation loss of the explainer itself are
minimized to learn the explainer’s architecture.

corresponding formulation is:

min
A

L(W ∗(∆∗(E∗(A))), D
(val)
a )

s.t. W ∗(∆∗(E∗(A))) = min
W

N∑
i=1

`(f(δ∗i (E
∗(A))� xi;W ), ti)

∆∗(E∗(A)) = max
∆

N∑
i=1

`(f(xi + δi;E
∗(A)), f(xi;E

∗(A)))

E∗(A) = min
E

L(E,A,D
(tr)
e ).

During this study, we set the architecture of the audience to ResNet-18. On CIFAR-100, LeaSE
is applied to P-DARTS. On CIFAR-10, LeaSE is applied to DARTS-2nd.

• Ablation study on γ. We investigate how the tradeoff parameter γ in Eq.(4.5) affects the
classification errors of the explainer. For both CIFAR-100 and CIFAR-10, 5K images are
uniformly sampled from the 50K training and validation examples. The 5K images are used
as a test set for reporting the architecture evaluation performance, where the architecture is
searched on the rest 45K images. We applied LeaSE to P-DARTS and chose ResNe-18 as the
architecture of the audience’s model.

In Table 6.5, we show the results on CIFAR-10 and CIFAR-100 under the ablation setting 1.
On both datasets, “audience + explainer” where the validation losses of both the audience model
and explainer itself are minimized to update the explainer’s architecture works better than “audi-
ence only” where only the audience’s validation loss is used to learn the architecture. Audience’s
validation loss reflects how good the explanations made by the explainer are. Explainer’s vali-
dation loss reflects how strong the explainer’s prediction ability is. Combining these two losses
provides more useful feedback to the explainer than using one loss only, which hence can help
the explainer to learn better.

In Figure 6.4, we show how LeaSE’s classification errors on the test sets of CIFAR-10 and
CIFAR-100 vary as we increase the tradeoff parameter γ. The curve on CIFAR-100 shows that
the error decreases when we increase γ from 0.1 to 0.5. The reason is that a larger γ enables the
audience to provide stronger feedback to the explainer regarding how good the explanations are.
Such feedback can guide the explainer to refine its architecture for generating better explanations.
However, if γ is further increased, the error becomes worse. Under such circumstances, too
much emphasis is put on evaluating how good the explanations are and less attention is paid to
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Figure 4.3: How errors change as γ increases.

the predictive ability of the explainer. The architecture is biased to generating good explanations
with predictive performance compromised, which leads to inferior performance. A similar trend
is shown in the curve on CIFAR-10.

4.5 Conclusions
Motivated by humans’ explanation-driven learning skill, we develop a novel machine learning
framework referred to as learning by self-explanation (LeaSE). In LeaSE, the primary goal is to
help an explainer model learn how to well perform a target task. The way to achieve this goal
is to let the explainer make sensible explanations. The intuition behind LeaSE is that a model
has to learn to understand a topic very well before it can explain this topic clearly. A four-level
optimization framework is developed to formalize LeaSE, where the learning is organized into
four stages: the explainer learns a topic; the explainer explains this topic; the audience learns this
topic based on the explanations given by the explainer; the explainer re-learns this topic based on
the learning outcome of the audience. We apply LeaSE for neural architecture search on image
classification datasets including CIFAR-100, CIFAR-10, and ImageNet. Experimental results
strongly demonstrate the effectiveness of our proposed method.
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Chapter 5

Small-Group Learning

5.1 Introduction
Small-group learning is a broadly practiced learning methodology in humans’ learning activities
with high efficacy. In SGL, a small group of students collaborate with each other to study the
same topic. Each student conveys his/her understanding of this topic to others and deepens the
understanding by referring to others’ thoughts. SGL can effectively facilitate more profound and
meaningful learning.

We are interested in asking whether this human learning skill can be translated into a ma-
chine learning skill to train better ML models. In a machine learning task (e.g., multi-class
classification), it is typically the case that models with different architectures have complemen-
tary advantages. On a certain class c, model A (e.g., ResNet [37]) performs better than model B
(e.g., DenseNet [45]). On another class d, model B performs better than model A. It is desirable
to let these two models help each other during learning so that both of them eventually achieve
great performance on both classes: specifically, model A helps model B to improve its perfor-
mance on class c and model B helps model A to improve its performance on class d. Based on
this idea, we propose a novel learning framework – small-group learning (SGL) (as illustrated in
Figure 7.1). SGL involves a set of ML learners which solve the same learning task T . Without
loss of generality, we assume T is classification while noting that our framework can be broadly
applied to other tasks as well. Each learner k has a learnable neural architecture Ak and two sets
of network weights Wk and Vk. The architectures and network weights of different learners are
different. All learners share the same training dataset and validation dataset. These learners help
each other to learn, in the following way: given an unlabeled dataset, each learner uses its inter-
mediately trained model (including architecture and network weights) to generate pseudo-labels
on this dataset and each learner leverages the pseudo-labeled datasets generated by other peers
to re-train its model. On each class c, models performing well on c can generate high-quality
pseudo-labeled datasets w.r.t c. Trained on these datasets, models that originally do not perform
well on c can improve their performance on c. In this framework, there are three learning stages.
In the first stage, each learner k trains its network weights Vk on the training dataset, with its
architecture Ak fixed. In the second stage, each learner k uses its optimally trained V ∗k in the
first stage to make predictions on an unlabeled dataset and generates a pseudo-labeled dataset;
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Figure 5.1: Illustration of small-group learning. There are three learners performing a classifi-
cation task with three classes: A, B, and C. Blue letters denote classes that learners are good at
(e.g., learner 1 performs well on class A and B) and red letters denote classes that learners are not
good at. For each class, strong learners help weak learners to learn. For example, learner 2 and 3
are strong learners on class C; they help learner 1 (which is a weak learner on C) to improve the
performance on C.

then each learner k trains its second set of network weightsWk using the pseudo-labeled datasets
generated by other learners and using a human-labeled training dataset. In the third stage, each
learner k updates its architecture Ak by minimizing prediction losses on the validation dataset.
A multi-level optimization framework is developed to organize the three learning stages and
enable them to be performed in a joint manner. Our method is applied for neural architecture
search tasks on CIFAR-100, CIFAR-10, and ImageNet [22]. Experimental results demonstrate
the broad effectiveness of SGL.

The major contributions of this chapter are:
• Drawing inspiration from the small-group learning (SGL) methodology in human learning,

we develop a novel ML framework which formalizes SGL into a machine learning skill.
In our framework, each learner uses its intermediately trained model to generate a pseudo-
labeled dataset and re-trains its model using pseudo-labeled datasets generated by other
learners.

• To formalize SGL, we develop a multi-level optimization (MLO) framework consisting of
three learning stages: learners learn independently; learners learn collaboratively; learners
validate themselves.

• An efficient optimization algorithm is developed to solve the MLO problem.
• We apply SGL for neural architecture search. The effectiveness of SGL is demonstrated

by the experimental results on CIFAR-100, CIFAR-10, and ImageNet.

5.2 Related Works
Neural Architecture Search (NAS). NAS aims to automatically identify highly-performing
architectures of deep neural networks instead of manually designing them by humans. Various
approaches have been proposed for NAS, including differentiable search methods [10, 58, 95]
and those based on reinforcement learning [76, 105, 106] and evolutionary algorithms [57, 78].
In RL-based approaches, a policy is learned to iteratively generate new architectures by max-
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imizing a reward which is the accuracy on the validation set. Evolutionary algorithm based
approaches represent architectures as individuals in a population. Individuals with high fitness
scores (validation accuracy) have the privilege to generate offspring, which replaces individuals
with low fitness scores. Differentiable approaches adopt a network pruning strategy. On top of an
over-parameterized network, importance weights of building blocks are learned using gradient
descent. After learning, blocks whose weights are close to zero are pruned. There have been
many efforts devoted to improving differentiable NAS methods. In P-DARTS [16], the depth of
searched architectures is allowed to grow progressively during the training process. Search space
approximation and regularization approaches are developed to reduce computational overheads
and improve search stability. PC-DARTS [96] reduces the redundancy in exploring the search
space by sampling a small portion of a super network. Operation search is performed in a sub-
set of channels with the held-out part bypassed in a shortcut. Our proposed SGL framework is
applicable to any differentiable search approach.

Pseudo Labeling. Pseudo labeling has been broadly applied to different applications includ-
ing knowledge distillation [40], adversarial robustness [11], self-supervised learning [94], etc.
Zhang et al. [102] proposed a deep mutual learning (DML) approach, which applies pseudo la-
beling for mutually learning multiple learners. Our proposed method differs from this one in two
aspects. First, our method proposes a multi-level optimization framework to perform pretraining,
pseudo-labeling, and finetuning (based on pseudo-labels) jointly end-to-end, where the models
are pretrained before they are used for generating pseudo labels. In contrast, DML directly uses
untrained models to perform pseudo-labeling, which may incur collective failures as discussed in
Section 5.4.4. Second, our method focuses on searching neural architectures while in DML the
architectures are manually designed by humans. In several works [35, 52, 91], a trained teacher
network (with a fixed architecture) is leveraged to generate pseudo-labels, which are used to
search the architecture of a student network. Such et al. [87] proposed a meta-learning approach
to learn a generative model which generates synthetic data and uses the generated data to search
neural architectures. In these works, pseudo-labeling is unidirectional: a network A with a fixed
architecture generates pseudo-labels which are used to search the architecture of B; B does not
generate pseudo-labels to search the architecture of A. Different from these works, in our work
pseudo-labeling is bi-directional: each model generates pseudo-labels which are used to search
the architectures of other models; meanwhile, each model uses pseudo-labels generated by other
models to search its own architecture.

Ensemble Learning. Our work is also related to ensemble learning, such as boosting [30],
bagging [8], etc. In ensemble learning, a set of models are learned to perform the same task.
During training, these models do not necessarily collaborate with each other. During testing, the
trained models work together to make a single prediction. The individual models in ensemble
learning are preferred to be different from each other so that their comparative advantages can be
combined together when making predictions. Our work differs from ensemble learning in that
the learners in our method help with each other during training; after training, different models
achieve similar performance as a result of mutual teaching; during testing, only the single best
model is retained for making predictions. Our method is more computationally efficient and
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Notation Meaning
Ak Architecture of learner k
Vk The first set of weights of learner k
Wk The second set of weights of learner k
D(tr) Training dataset
D(val) Validation dataset
D(u) Unlabeled dataset

Table 5.1: Notations in small-group learning

memory efficient than ensemble learning methods during testing time since a single model is
used for making predictions while ensemble learning utilizes all models to perform predictions.

Cooperative Learning. Previously, cooperative learning, where multiple models collaborate
to perform a task, has been investigated in multi-agent learning [72], co-training [5], federated
learning [6], etc. Our method differs from these existing methods in that we focus on collabora-
tive neural architecture search via mutual pseudo-labeling.

5.3 Methods
In this section, we propose a small-group learning (SGL) framework and develop an optimization
algorithm.

5.3.1 Small-Group Learning
In our framework, there are a set of K learners, all of which learn to solve the same target
task. Without loss of generality, we assume the task is classification. Each learner k has a
learnable architecture Ak and two sets of learnable network weights Vk and Wk. All learners
share the same training dataset D(tr), the same validation dataset D(val), and an unlabeled dataset
D(u). The K learners perform learning in three stages. In the first stage, each learner trains a
preliminary model. In the second stage, each learner uses its model trained in the first stage to
perform pseudo-labeling. Then each learner re-trains its model using pseudo-labeled datasets
generated by other learners. In the third stage, each learner measures the validation performance
of its model trained in the second stage and updates its architecture to improve the validation
performance. We discuss the details in the sequel. In the first stage, each learner k trains its
weights Vk, with its architecture Ak fixed:

V ∗k (Ak) = minVk L(Vk, Ak, D
(tr)). (5.1)

The architectureAk is used to make predictions on training examples and define the training loss.
However, Ak should not be optimized to minimize the training loss. Otherwise, the training loss
can be easily minimized to zero by makingAk a very large (hence highly expressive) architecture,
which will overfit the training data and have poor performance on unseen data. The optimally
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trained weights V ∗k (Ak) is a function of Ak since V ∗k (Ak) is a function of L(Vk, Ak, D
(tr)) and

L(Vk, Ak, D
(tr)) is a function of Ak.

In the second stage, each learner k uses V ∗k (Ak) learned in the first stage to make predictions
on an unlabeled datasetD(u) = {xi}Ni=1 and generates a pseudo-labeled datasetD(pl)

k (D(u), V ∗k (Ak))
= {(xi, f(xi;V

∗
k (Ak)))}Ni=1, where f(·;V ∗k (Ak)) is the network parameterized by V ∗k (Ak). f(xi;

V ∗k (Ak)) is a J-dimensional vector where J is the number of classes and the j-th element of
f(xi;V

∗
k (Ak)) indicates the probability that xi belongs to the j-th class. The sum of all elements

in f(xi;V
∗
k (Ak)) is one. Meanwhile, each learner k uses pseudo-labeled datasets {D(pl)

j }Kj 6=k pro-
duced by other learners as well as a human-labeled dataset D(tr) to train its other set of network
weights Wk:

W ∗
k (Ak, {V ∗j (Aj)}Kj 6=k) = min

Wk

L(Wk, Ak, D
(tr)) + λ

K∑
j 6=k

L(Wk, Ak, D
(pl)
j (D(u), V ∗j (Aj))),

where the first loss term L(Wk, Ak, D
(tr)) in the objective is defined on the human-labeled train-

ing dataset and the second loss term is defined on the pseudo-labeled datasets produced by other
learners. Both losses are cross-entropy losses. λ is a tradeoff parameter. Due to the same reason
mentioned above, Ak should not be updated at this stage either. Note that W ∗

k (Ak, {V ∗j (Aj)}Kj 6=k)
is a function ofAk and {V ∗j (Aj)}Kj 6=k sinceW ∗

k (Ak, {V ∗j (Aj)}Kj 6=k) is a function ofL(Wk, Ak, D
(tr))

+λ
∑K

j 6=k L(Wk, Ak, D
(pl)
j (D(u), V ∗j (Aj))) which is a function of Ak and {V ∗j (Aj)}Kj 6=k. In the

third stage, each learner validates its W ∗
k (Ak, {V ∗j (Aj)}Kj 6=k) on the validation set D(val). The

learners optimize their architectures by minimizing the validation losses:

min
{Ak}Kk=1

K∑
k=1

L(W ∗
k (Ak, {V ∗j (Aj)}Kj 6=k), Ak, D(val)). (5.2)

Performed in a unified framework, the three stages mutually influence each other: {V ∗k (Ak)}Kk=1

trained in the first stage are leveraged to calculate the training loss in the second stage; {W ∗
k (Ak,

{V ∗j (Aj)}Kj 6=k)}Kk=1 trained in the second stage are leveraged to calculate the validation loss in the
third stage; after {Ak}Kk=1 are optimized in the third stage, they will render the training loss in the
first stage to be changed, which changes {V ∗k (Ak)}Kk=1 in the second stage accordingly. Figure 7.2
illustrates the three stages. To this end, we formulate SGL as a three-level optimization problem:

min
{Ak}Kk=1

K∑
k=1

L(W ∗
k (Ak, {V ∗j (Aj)}Kj 6=k), Ak, D(val))

s.t. {W ∗
k (Ak, {V ∗j (Aj)}Kj 6=k)}Kk=1 = min

{Wk}Kk=1

K∑
k=1

L(Wk, Ak, D
(tr))

+λ
K∑
j 6=k

L(Wk, Ak, D
(pl)
j (D(u), V ∗j (Aj)))

{V ∗k (Ak)}Kk=1 = min
{Vk}Kk=1

K∑
k=1

L(Vk, Ak, D
(tr))

(5.3)

This formulation consists of three optimization problems including two inner-optimization prob-
lems and one outer-optimization problem. The two inner-optimization problems are on the con-
straints of the outer optimization problem. From bottom to top, the three optimization problems
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Figure 5.2: Three learning stages in small-group learning. Solid arrows denote the forward pass
where predictions are made and losses are calculated. Dotted arrows represent the backward
pass of calculating gradients of model architectures and weights and performing gradient-based
updates. For simplicity, we assume there are two learners in the group. Extension to multiple
learners is straightforward.

correspond to the first, second, and third learning stage respectively. Inspired by [58], we pa-
rameterize the architecture A using continuous variables which allow the search to be conducted
using efficient gradient-based methods. The search space of A is overparameterized with many
building blocks. For each block, a continuous variable is used to represent whether this block
should be selected to form the final architecture. Search amounts to learning these variables.

5.3.2 Optimization Algorithm
To solve the SGL problem, we develop an efficient gradient-based optimization algorithm, draw-
ing inspirations from [58]. In the following, ∇2

Y,Xf(X, Y ) denotes ∂f(X,Y )
∂X∂Y

. First of all, we
approximate V ∗k (Ak) using

V ′k = Vk − ξV∇VkL(Vk, Ak, D
(tr)), (5.4)
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where ξV is a learning rate. Plugging {V ′j }Kj=1 into
∑K

k=1(L(Wk, Ak, D
(tr)) + λ

∑K
j 6=k L(Wk, Ak,

D
(pl)
j (D(u), V ∗j (Aj)))), we obtain an approximated objective

∑K
k=1O

W
k where OW

k = L(Wk,

Ak, D
(tr)) + λ

∑K
j 6=k L(Wk, Ak, D

(pl)
j (D(u), V ′j )). Then we approximate W ∗

k (Ak, {V ∗j (Aj)}Kj 6=k)
using one-step gradient descent update of Wk w.r.t OW

k :

W ′
k = Wk − ξW∇Wk

(L(Wk, Ak, D
(tr)) + λ

∑K
j 6=k L(Wk, Ak, D

(pl)
j (D(u), V ′j ))). (5.5)

Finally, we plug {W ′
k}Kk=1 into

∑K
k=1 L(W ∗

k (Ak, {V ∗j (Aj)}Kj 6=k), Ak, D(val)) and get
∑K

k=1 L(W ′
k,

Ak, D
(val)). We can update the architecture Ak of learner k by descending the gradient of∑K

j=1 L(W ′
j , Aj, D

(val)) w.r.t Ak:

Ak ← Ak − ηA(∇Ak
L(W ′

k, Ak, D
(val)) +

K∑
j 6=k
∇Ak

L(W ′
j , Aj, D

(val))). (5.6)

where

∇Ak
L(W ′

k, Ak, D
(val)) =

∇Ak
L(Wk − ξW∇Wk

(L(Wk, Ak, D
(tr)) + λ

∑K
j 6=k L(Wk, Ak, D

(pl)
j (D(u), V ′j ))), Ak, D

(val)) =

∇Ak
L(W ′

k, Ak, D
(val))− ξW∇2

Ak,Wk
(L(Wk, Ak, D

(tr))+

λ
∑K

j 6=k L(Wk, Ak, D
(pl)
j (D(u), V ′j )))∇W ′k

L(W ′
k, Ak, D

(val)).
(5.7)

Calculating matrix-vector product∇2
Ak,Wk

(L(Wk, Ak, D
(tr)) + λ

∑K
j 6=k L(Wk, Ak, D

(pl)
j (D(u)

, V ′j )))∇W ′k
L(W ′

k, Ak, D
(val)) incurs a lot of computational cost. This cost can be reduced by a

finite difference approximation [58]:

∇2
Ak,Wk

(L(Wk, Ak, D
(tr)) + λ

∑K
j 6=k L(Wk, Ak, D

(pl)
j (D(u), V ′j )))∇W ′k

L(W ′
k, Ak, D

(val)) ≈
1

2α
(∇Ak

(L(W+
k , Ak, D

(tr)) + λ
K∑
j 6=k

L(W+
k , Ak, D

(pl)
j (D(u), V ′j )))

−∇Ak
(L(W−

k , Ak, D
(tr)) + λ

K∑
j 6=k

L(W−
k , Ak, D

(pl)
j (D(u), V ′j )))),

(5.8)
whereW±

k = Wk±α∇W ′k
L(W ′

k, Ak, D
(val)) and α is a small scalar 0.01/‖∇W ′k

L(W ′
k, Ak, D

(val))‖2.
For∇Ak

L(W ′
j , Aj, D

(val))(j 6= k) in Eq.(7.10), it can be calculated as:

∇Ak
L(W ′

j , Aj, D
(val)) =

∂W ′j
∂Ak
∇W ′j

L(W ′
j , Aj, D

(val)) =

−ξWλ
∂∇Wj

L(Wj ,Aj ,D
(pl)
k (D(u),V ′k))

∂Ak
∇W ′j

L(W ′
j , Aj, D

(val)) =

−ξWλ
∂V ′k
∂Ak
∇2
V ′k,Wj

L(Wj, Aj, D
(pl)
k (D(u), V ′k))∇W ′j

L(W ′
j , Aj, D

(val))

(5.9)

where

∂V ′k
∂Ak

=
∂(Vk − ξV∇VkL(Vk, Ak, D

(tr)))

∂Ak
(5.10)

= −ξV∇2
Ak,Vk

L(Vk, Ak, D
(tr)) (5.11)

The algorithm for solving SGL is in Algorithm 7.
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Algorithm 5: Optimization algorithm for SGL
while not converged do

1. For learner 1, · · · , K, update Vk using Eq.(7.6)
2. For learner 1, · · · , K, update Wk using Eq.(7.8)
3. For learner 1, · · · , K, update Ak using Eq.(7.10)

end

5.4 Experiments
In this section, our proposed SGL is applied to search neural architectures for image classifica-
tion. Please refer to the supplements for more hyperparameter settings, results, and significance
tests of results.

5.4.1 Datasets
We performed the experiments on three datasets: CIFAR-10, CIFAR-100, and ImageNet [22].
CIFAR-10 is split into a 25K training set, a 25K validation set, and a 10K test set. So is CIFAR-
100. The training and validation set is used as D(tr) and D(val) in SGL. ImageNet has 1.3M
training images and 50K test images. CIFAR-10 and CIFAR-100 have 10 classes and ImageNet
has 1000 classes.

5.4.2 Experimental Settings
Following the protocol in [58], each experiment consists of an architecture search phrase and
an architecture evaluation phrase. In the search phrase, an architecture A is learned by solv-
ing Eq.(5.14). In the evaluation phrase, multiple copies of A are composed into a larger net-
work, which is then trained from scratch and tested on the test set. For the search space of A,
we used the ones proposed in DARTS [58], 2) DARTS− [18], 3) P-DARTS [16], and 4) PC-
DARTS [96], where the building blocks include 3×3 and 5×5 (dilated) separable convolutions,
3 × 3 max/average pooling, identity operation, and zero operation. In SGL, we set the num-
ber of learners to 2. The tradeoff parameter λ was tuned in {0.1, 0.5, 1, 2, 3} on a held-out 5k
dataset. The best performing value of λ is 1. When searching architectures on CIFAR-10, the
input images (without labels) in CIFAR-100 were used as the unlabeled dataset; vice versa.

For architecture search on CIFAR-10 and CIFAR-100, each architecture consists of a stack
of 8 cells and each cell consists of 7 nodes. The initial channel number was set to 16. The
rest hyperparameters for architectures and network weights mostly follow those in DARTS, P-
DARTS, PC-DARTS, and DARTS−. During architecture search, the Adam optimizer [47] was
used to optimize architecture variables, with a learning rate of 3e-4, a batch size of 50, and a
weight decay of 1e-3. The SGD optimizer was used to optimize network weights, with an initial
learning rate of 0.025, a cosine decay scheduler, a batch size of 50, a weight decay of 3e-4, and a
momentum of 0.9. The search algorithm ran for 50 epochs. For architecture search on ImageNet,
following [96], we randomly sample 10% images from the 1.3M training set as D(tr) and 2.5%
images as D(val) in SGL. Another randomly sampled 10% images (excluding labels) are used as
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the unlabeled dataset. The hyperparameters in the ImageNet experiments mostly follow those in
the CIFAR-10 experiments. These experiments were conducted using a single Tesla v100 GPU.

After searching, among the K learners, the one achieving the smallest validation loss is
retained and the rest are discarded. The architecture A∗ of the retained learner is evaluated. For
CIFAR-10 and CIFAR-100, the optimal cell in A∗ is duplicated 20 times, which are then stacked
into a large network. The initial channel number was set to 36. The stacked large network was
trained on the combination of training set and validation set for 600 epochs. The SGD optimizer
is used for weights training, with an initial learning rate of 0.025, a cosine decay scheduler, a
batch size of 96, a momentum of 0.9, and a weight decay of 3e-4. For architecture evaluation
on ImageNet, the large network is a stack of 14 cells, with an initial channel number of 48. The
large network was trained on the 1.3M training images using SGD on 8 Tesla v100 GPUs. On
ImageNet, we also evaluated the architectures searched on CIFAR-10 and CIFAR-100, following
the same evaluation protocol. The stacked large network was trained for 250 epochs, with an
initial learning rate of 0.5, a batch size of 1024, and a weight decay of 3e-5. We repeat each SGL
experiment 10 times with different random seeds (between 1 and 10). The mean and standard
deviation of test results in the 10 runs are reported.

5.4.3 Results
In Table 6.2, we compare the classification error on the test set, number of weight parameters, and
search cost (GPU days) of different methods on CIFAR-100. We observe the following from this
table. First, under different settings of search spaces, including those from DARTS, DARTS−,
P-DARTS, and PC-DARTS, our method achieves significantly lower test errors than the original
baselines. For example, DARTS(1st)+SGL achieves an error of 18.54% which is greatly lower
than the 20.52% error of DARTS(1st). As another example, PDARTS+SGL achieves a signifi-
cantly lower error of 16.58%, compared with the 17.49% error of P-DARTS. These results show
that our proposed small-group learning is an effective approach in searching better-performing
architectures. In our method, learners with different architectures collaboratively solve the same
task. Since having different architectures, these learners possess complementary advantages: for
a certain class x, some learners perform better in classifying examples belonging to x than other
learners; for another class y, another set of learners have better classification abilities than the
rest of learners; and so on. Via pseudo-labeling, each learner can transfer the knowledge in areas
it is good at to other learners; equivalently, each learner can mitigate its deficiency in certain
areas by leveraging the wisdom from other learners which are excellent in those areas. This
collaboration mechanism enables different learners to jointly improve. In single-learner NAS,
such a mechanism is lacking, which renders the performance to be inferior. Second, our method
is broadly applicable and effective, as evidenced by the fact that our method improves a variety
of baselines (including DARTS, DARTS−, P-DARTS, and PC-DARTS) when applied to these
methods. Our method is designed as a general framework which is agnostic to how the search
space is crafted, which paves a way for leveraging our method to improve most (if not all) exist-
ing differentiable NAS methods. Third, among all methods, PCDARTS+SGL achieves the best
performance. This shows that our proposed SGL approach is very competitive in pushing the
limit of NAS research. Fourth, parameter number and search cost of our method is similar to
those of other differentiable methods. This indicates that our method can search more accurate

65



Method Error(%) Param(M) Cost

*ResNet [36] 22.10 1.7 -
*DenseNet [45] 17.18 25.6 -
*PNAS [56] 19.53 3.2 150
*ENAS [76] 19.43 4.6 0.5
*AmoebaNet [78] 18.93 3.1 3150
*DARTS-2nd [58] 20.58±0.44 1.8 1.5
*GDAS [25] 18.38 3.4 0.2
*R-DARTS [100] 18.01±0.26 - 1.6
∆DARTS+ [53] 17.11±0.43 3.8 0.2
*DropNAS [42] 16.39 4.4 0.7
†DARTS(1st) [58] 20.52±0.31 1.8 0.4

DARTS(1st) + SGL (ours) 18.54±0.21 2.2 1.2
*DARTS− [18] 17.51±0.25 3.3 0.4
†DARTS− [18] 18.97±0.16 3.1 0.4

DARTS− + SGL (ours) 16.90±0.10 3.5 2.0
*P-DARTS [16] 17.49 3.6 0.3

P-DARTS + SGL (ours) 16.58±0.18 3.6 2.1
†PC-DARTS [96] 17.01±0.06 4.0 0.1

PC-DARTS + SGL (ours) 16.34±0.11 4.1 0.5

Table 5.2: Test error, parameter number, and search cost (GPU days) on CIFAR-100. Search cost
is measured by GPU days on a Tesla v100. In SGL, we count the number of parameters in the sin-
gle retained learner (the one yielding the lowest validation loss). DARTS(1st) and DARTS(2nd)
denotes that the first-order and second-order approximation is used in DARTS. On CIFAR-100,
DARTS(2nd) is no better than DARTS(1st) despite using a much more computationally-heavy
and memory-inefficient second-order approximation. * indicates that the results are taken from
DARTS− [18]. † indicates that the results were obtained by re-running the methods for 10 times.
In our run of DARTS−, we were not able to achieve the error reported in [18]. ∆ indicates that
during architecture evaluation, we ran for 600 epochs instead of 2000 as in [54] to make sure the
comparison with other approaches (which use 600 epochs) is fair.

architectures without incurring significant additional costs such as memory footprint, training
time, inference time, etc.

In Table 6.3, we compare different methods on CIFAR-10, in terms of classification error on
test set, number of network weights, and search cost (GPU days). When applied to DARTS(1st),
our method improves the performance of this baseline very significantly, reducing the 3.00%
error of DARTS(1st) to 2.41%, which surpasses all other methods in this table. This again
demonstrates that our method is effective in searching highly-performant architectures, thanks
to its mechanism of enabling models with complementary advantages to collaboratively learn
from each other and mitigate weakness by taking in knowledge from stronger learners. The
performance of GTN is close to ours. However, this method leads to a very large architecture
with 97.9M parameters, which is about 26 times larger than ours. When applied to other methods
including †DARTS−, PC-DARTS, and P-DARTS, our method does not achieve a significant
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Method Error(%) Param(M) Cost

*DenseNet [45] 3.46 25.6 -
*HierEvol [57] 3.75±0.12 15.7 300
*NAONet-WS [62] 3.53 3.1 0.4
*PNAS [56] 3.41±0.09 3.2 225
*ENAS [76] 2.89 4.6 0.5
*NASNet-A [106] 2.65 3.3 1800
*AmoebaNet-B [78] 2.55±0.05 2.8 3150
*R-DARTS [100] 2.95±0.21 - 1.6
*GDAS [25] 2.93 3.4 0.2
*SNAS [95] 2.85 2.8 1.5
∆DARTS+ [53] 2.83±0.05 3.7 0.4
*BayesNAS [103] 2.81±0.04 3.4 0.2
*DARTS-2nd [58] 2.76±0.09 3.3 1.5
*MergeNAS [93] 2.73±0.02 2.9 0.2
*NoisyDARTS [19] 2.70±0.23 3.3 0.4
*ASAP [69] 2.68±0.11 2.5 0.2
*SDARTS [14] 2.61±0.02 3.3 1.3
*DropNAS [42] 2.58±0.14 4.1 0.6
*FairDARTS [17] 2.54 3.3 0.4
*DrNAS [15] 2.54±0.03 4.0 0.4
*GTN [87] 2.42±0.03 97.9 0.67
*DARTS(1st) [58] 3.00±0.14 3.3 0.4

DARTS(1st) + SGL (ours) 2.41±0.06 3.7 1.2
*DARTS− [18] 2.59±0.08 3.5 0.4
†DARTS− [18] 2.97±0.04 3.3 0.6

DARTS− + SGL (ours) 2.60±0.07 3.1 2.0
*PC-DARTS [96] 2.57±0.07 3.6 0.1

PC-DARTS + SGL (ours) 2.60±0.12 3.5 0.5
*P-DARTS [16] 2.50 3.4 0.3

P-DARTS + SGL (ours) 2.47±0.10 3.6 2.1

Table 5.3: Test error, parameter number, and search cost (GPU days) on CIFAR-10. * indicates
the results are taken from DARTS− [18], NoisyDARTS [19], DrNAS [15], and GTN [87]. Other
notations are the same as those in Table 6.2.

improvement, which is probably due to the fact that CIFAR-10 is a much easier classification
dataset than CIFAR-100 and therefore different methods tend to achieve very close performance.

In Table 6.4, we make a comparison of different methods on ImageNet, in terms of top-1
and top-5 classification errors. In SGL-PC-DARTS-ImageNet, our proposed SGL is applied to
PC-DARTS and the search is performed on ImageNet. Our method achieves a top-1 error of
23.3% and a top-5 error of 6.7%, which are the lowest among all methods in this table and are
much lower than those of PC-DARTS-ImageNet. This demonstrates that our method has strong
capability in searching high-quality architectures not only for small datasets like CIFAR10/100,
but also for large-scale real-world datasets such as ImageNet. In addition, on ImageNet we
evaluated the architectures searched on CIFAR10/100, including SGL-DARTS-1st-CIFAR10,
SGL-P-DARTS-CIFAR10, and SGL-P-DARTS-CIFAR100. As can be seen, these architectures
searched by our SGL method achieve better performance than those searched by corresponding
baselines. For example, applying SGL to DARTS-1st-CIFAR10, we reduce the 26.1% error
of DARTS-1st-CIFAR10 down to 24.9%. This further demonstrates the effectiveness of our
method.
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Method
Top-1 Top-5 Param Runtime

Error (%) Error (%) (M) (GPU days)

*Inception-v1 [88] 30.2 10.1 6.6 -
*MobileNet [43] 29.4 10.5 4.2 -
*ShuffleNet 2× (v1) [101] 26.4 10.2 5.4 -
*ShuffleNet 2× (v2) [63] 25.1 7.6 7.4 -
*NASNet-A [106] 26.0 8.4 5.3 1800
*PNAS [56] 25.8 8.1 5.1 225
*MnasNet-92 [89] 25.2 8.0 4.4 1667
*AmoebaNet-C [78] 24.3 7.6 6.4 3150
*SNAS-CIFAR10 [95] 27.3 9.2 4.3 1.5
*BayesNAS-CIFAR10 [103] 26.5 8.9 3.9 0.2
*PARSEC-CIFAR10 [12] 26.0 8.4 5.6 1.0
*GDAS-CIFAR10 [25] 26.0 8.5 5.3 0.2
*DSNAS-ImageNet [44] 25.7 8.1 - -
*SDARTS-ADV-CIFAR10 [14] 25.2 7.8 5.4 1.3
*PC-DARTS-CIFAR10 [96] 25.1 7.8 5.3 0.1
*ProxylessNAS-ImageNet [10] 24.9 7.5 7.1 8.3
*FairDARTS-CIFAR10 [17] 24.9 7.5 4.8 0.4
*FairDARTS-ImageNet [17] 24.4 7.4 4.3 3.0
*DrNAS-ImageNet [15] 24.2 7.3 5.2 3.9
*DARTS+-ImageNet [53] 23.9 7.4 5.1 6.8
*DARTS−-ImageNet [18] 23.8 7.0 4.9 4.5
*DARTS+-CIFAR100 [53] 23.7 7.2 5.1 0.2
*DARTS-2nd-CIFAR10 [58] 26.7 8.7 4.7 0.4
†DARTS-1st-CIFAR10 [58] 26.1 8.3 4.5 0.4

SGL-DARTS-1st-CIFAR10 (ours) 24.9 7.7 5.2 2.1
*P-DARTS-CIFAR10 [16] 24.4 7.4 4.9 0.3

SGL-P-DARTS-CIFAR10 (ours) 24.3 7.2 5.1 2.1
*P-DARTS-CIFAR100 [16] 24.7 7.5 5.1 0.3

SGL-P-DARTS-CIFAR100 (ours) 23.9 7.2 5.3 2.1
*PC-DARTS-ImageNet [96] 24.2 7.3 5.3 3.8

SGL-PC-DARTS-ImageNet (ours) 23.3 6.7 6.4 4.0

Table 5.4: Top-1 and top-5 test errors (%) on ImageNet. * indicates that the results are taken
from DARTS− [18], DrNAS [15], and AKDNet [59]. † denotes that the result is obtained from
our run. The rest notations are the same as those in Table 6.2. From top to bottom, different
panels show manually-designed networks, non-differentiable search methods, and differentiable
search methods.

5.4.4 Ablation Studies
In this section, we perform ablation studies to evaluate the importance of individual components
in our SGL framework, by comparing the full SGL method with the following ablation settings.
• Ablation setting 1. In this setting, the first learning stage in Eq.(5.14) is removed. Pseudo-
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labeling is performed using the weights W . The corresponding formulation is:

min
{Ak}Kk=1

K∑
k=1

L(W ∗
k ({Aj}Kj=1), Ak, D

(val))

s.t. {W ∗
k ({Aj}Kj=1)}Kk=1 = min

{Wk}Kk=1

K∑
k=1

L(Wk, Ak, D
(tr))

+λ
K∑
j 6=k

L(Wk, Ak, D
(pl)
j (D(u),Wj, Aj))

(5.12)

In this experiment, λ is set to 2 for CIFAR-10 and to 1 for CIFAR-100. In terms of the search
space, it is set to the space used in P-DARTS for CIFAR-100, and set to the space used in
DARTS(1st) for CIFAR-10.

• Ablation setting 2. In this setting, we separate the first stage in SGL from the second stage.
We first run the first stage to search an architecture Bk for each learner k independently, by
solving the following problem:

min
{Bk}Kk=1

K∑
k=1

L(V ∗k (Bk), Bk, D
(val))

s.t. {V ∗k (Bk)}Kk=1 = min
{Vk}Kk=1

K∑
k=1

L(Vk, Bk, D
(tr))

(5.13)

Then we use the searched architectures {B∗k}Kk=1 together with their optimally trained network
weights {V ∗k }Kk=1 to perform pseudo-labeling and use the pseudo-labeled datasets {D(pl)

j (D(u), V ∗j ,
B∗j )}Kj=1 to perform the second stage, which amounts to solving the following problem:

min
{Ak}Kk=1

K∑
k=1

L(W ∗
k (Ak), Ak, D

(val))

s.t. {W ∗
k (Ak)}Kk=1 = min

{Wk}Kk=1

K∑
k=1

L(Wk, Ak, D
(tr)) + λ

K∑
j 6=k

L(Wk, Ak, D
(pl)
j (D(u), V ∗j , B

∗
j ))

(5.14)
In this experiment, λ is set to 2 for CIFAR-10 and to 1 for CIFAR-100. In terms of the search
space, it is set to the space used in P-DARTS for CIFAR-100, and set to the space used in
DARTS(1st) for CIFAR-10.

• Ablation setting 3. In this setting, in the second stage of SGL, each learner is trained solely
based on pseudo-labeled datasets by other learners, without using human-labeled training data.
The corresponding formulation is:

min
{Ak}Kk=1

K∑
k=1

L(W ∗
k (Ak, {V ∗j (Aj)}Kj 6=k), Ak, D(val))

s.t. {W ∗
k (Ak, {V ∗j (Aj)}Kj 6=k)}Kk=1 = min

{Wk}Kk=1

K∑
k=1

K∑
j 6=k

L(Wk, Ak, D
(pl)
j (D(u), V ∗j (Aj)))

{V ∗k (Ak)}Kk=1 = min
{Vk}Kk=1

K∑
k=1

L(Vk, Ak, D
(tr))

(5.15)
For CIFAR-100, SGL is applied to P-DARTS. For CIFAR-10, SGL is applied to DARTS-1st.
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Method Error (%)
With first stage (CIFAR-100) 16.58±0.18
Without first stage (CIFAR-100) 17.33±0.20
With first stage (CIFAR-10) 2.41±0.06
Without first stage (CIFAR-10) 2.60±0.05

Table 5.5: Results for ablation setting 1. “With first stage” corresponds to the full SGL frame-
work. “Without first stage” corresponds to the formulation in Eq.(6.4.4) where the first learning
stage is removed. The results are classification errors on the test sets of CIFAR-10 and CIFAR-
100.

Method Error (%)
Joint (CIFAR-100) 16.58±0.18
Separate (CIFAR-100) 17.80±0.15
Joint (CIFAR-10) 2.41±0.06
Separate (CIFAR-10) 2.55±0.13

Table 5.6: Results for ablation setting 2. “Separate” means the first stage in SGL is conducted
separately from the second stage. “Joint” corresponds to the full SGL framework where the first
and second stages are conducted jointly. The results are classification errors on the test sets of
CIFAR-10 and CIFAR-100.

• Ablation study on the tradeoff parameter λ. We investigate how the classification error changes
with λ in Eq.(5.14). For either CIFAR-10 or CIFAR-100, 5K examples are uniformly sampled
from the 25K training set and 25K validation set. Performance is reported on the 5K sampled
data. The rest data is used as before. SGL is applied to P-DARTS.

• Ablation study on the number of learners K. We investigate how the classification error
changes with the number of learners K. Performance is reported on the 5K randomly sam-
pled data. SGL is applied to DARTS(1st).

Table 6.5 shows the classification errors on the test sets of CIFAR-10 and CIFAR-100, under
the settings of “with first stage” and “without first stage” in the first ablation study. As can be
seen, removing the first stage renders the errors to increase on both CIFAR-10 and CIFAR-100,
compared with using the first stage. The reason is that: for “without first stage”, different learn-
ers directly use untrained models to generate pseudo-labels. The classification performance of
untrained models is not very satisfactory. As a result, the quality of pseudo-labels has no guar-
antee. Training models on poorly-labeled datasets will degrade the quality of these models. In
contrast, in full SGL which performs model pretraining in the first stage then using pretrained
models to perform pseudo-labeling, the risk of generating poor-quality pseudo-labels is signifi-
cantly reduced.

Table 5.6 shows the classification errors on the test sets of CIFAR-10 and CIFAR-100, under
the settings of “Separate” and “Joint” in the second ablation study. As can be seen, conducting
the first and second stage separately leads to worse performance than performing them jointly,
on both datasets. The reason is that: when performed separately, the second stage cannot influ-
ence the first stage; in the first stage, once the architectures are searched and network weights are
trained, they will remain fixed. In contrast, in the full SGL framework where the first and second
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Method Error (%)
With human labels (CIFAR-100) 16.58±0.18
Without human labels (CIFAR-100) 16.96±0.17
With human labels (CIFAR-10) 2.41±0.06
Without human labels (CIFAR-10) 2.74±0.15

Table 5.7: Results for ablation setting 3. “With human labels” corresponds to the full SGL
framework. “Without human labels” corresponds to the formulation in Eq.(6.4.4) where in the
second stage each learner is trained only on pseudo-labeled datasets without using human-labeled
datasets. The results are classification errors on the test sets of CIFAR-10 and CIFAR-100.
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Figure 5.3: How classification errors change as the tradeoff parameter λ increases. The errors
are reported on the 5K randomly sampled data.

stage are performed jointly and share the same architecture, models trained in the second stage
affect the validation loss, which subsequently affects the architecture; the changed architecture
renders the models in the first stage to change as well. This can potentially bring in a syner-
gistic effect: better models in the second stage results in better architectures in the third stage;
better architectures improve the models in the first stage. Performing the first and second stage
separately makes such a synergistic effect impossible to happen, which hence leads to inferior
performance.

Table 6.6 shows the classification errors on the test sets of CIFAR-10 and CIFAR-100 under
the settings of “with human labels” and “without human labels” in the third ablation study. As
can be seen, in the second stage of SGL, using only pseudo-labeled datasets for model training
without leveraging human-labeled dataset yields worse performance. The reason is that mutual
training solely based on pseudo-labeled datasets has a high risk of collective failure: if one
model performs poorly, it will generate erroneous pseudo-labels, which renders other models
trained using the pseudo-labels to fail as well. By leveraging an external human-labeled dataset
where the labels are mostly correct, such a risk can be greatly reduced.

Figure 7.3 shows the classification errors on CIFAR-100 and CIFAR-10 change as λ in-
creases. As can be seen, on CIFAR-100, when λ increases from 0 to 1, the error decreases. This
is because a larger λ results in a stronger collaboration between learners where each learner ac-
tively relies on the pseudo-labeled datasets generated by other learners to train itself. A stronger
collaboration enables different learners to help each other to improve. However, if λ further in-
creases to 2, the error increases. This is because too much emphasis is put on the pseudo-labeled
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Figure 5.4: How classification errors change as the number of learners K increases. The errors
are reported on the 5K randomly sampled data.

datasets which are less reliable than the human-labeled training set. Ignoring the human-labeled
training set degrades the quality of trained models. Similar trend is observed in the CIFAR-10
results as well.

Figure 5.4 shows how the classification errors on CIFAR-100 and CIFAR-10 vary as the num-
ber of learners K increase from 1 to 3. As can be seen, when increasing K from 1 to 2, the error
decreases. Under K = 1, there is no collaboration. When K = 2, two learners collaboratively
help each other to improve, hence achieving better performance. When K increases from 2 to 3,
the performance does not change significantly. This indicates that two learners are sufficient for
exploring the benefit of collaboration.

5.5 Conclusions
In this chapter, drawing inspirations from the small-group learning (SGL) skill of humans, we
propose a new ML framework to formalize SGL into a machine learning skill and leverage it to
train better ML models. In SGL, a set of learners help each other to learn better: each learner
uses its intermediately trained model to make predictions on unlabeled data examples and gen-
erates a pseudo-labeled dataset; meanwhile, each learner uses pseudo-labeled datasets generated
by other learners to retrain and improve its model. To formalize SGL, a multi-level optimiza-
tion framework is proposed, which consists of three learning stages: each learner trains an ini-
tial model separately; all learners retrain their models collaboratively by mutually performing
pseudo-labeling; all learners improve their neural architectures based on the feedback obtained
during model validation. We apply SGL to search neural architectures on CIFAR-100, CIFAR-
10, and ImageNet. Experimental results demonstrate the effectiveness of our method.
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Chapter 6

Learning by Teaching

6.1 Introduction
As the saying goes, a good learner is also a good teacher. In human learning, a commonly
adopted strategy is to learn by teaching others. In the process of explaining a topic to others,
the learner can further enhance his/her understanding of this topic. The efficacy of teaching in
helping improve learning has been demonstrated in many studies. In [29], the studies showed
that students who teach what they have learned to their peers achieve better understanding and
knowledge retention than students spending the same time re-studying. In [48], the study shows
that teaching improves the teacher’s learning because it encourages the teacher to retrieve what
they have previously learned.

This teaching-driven learning methodology of humans motivates us to think about whether it
can benefit machine learning as well. Toward this goal, we propose a novel ML framework called
learning by teaching (LBT) (as illustrated in Figure 7.1), which improves the learning outcome
of a model by encouraging this model to teach other models to perform well. In our framework,
there is a teacher model and a student model, which perform the same target task (e.g., text
classification, time-series forecasting, etc.). The eventual goal is to make the teacher perform
well on the target task. The way to achieve that is to let the teacher teach the student and use the
student’s performance as a feedback to guide the teacher to improve its learning capability and
outcome. The teacher model consists of a learnable architecture and a set of learnable network
weights. The student model consists of a predefined architecture (by human experts) and a set
of learnable network weights. Similar to [41], teaching is conducted via pseudo-labeling: given
an unlabeled dataset U , the teacher uses its intermediately trained model to make predictions
on the input data examples in U ; then the student model is trained on these pseudo-labeled data
examples. Teacher-student learning based on pseudo-labeling has been studied in many previous
works [73, 90, 94]. Our work differs from previous ones in that we aim to improve the learning
ability of the teacher by letting it teach a student while previous works focus on improving the
learning ability of a student model by letting it be taught by a fixed teacher model. In other words,
our work focuses on learning the teacher while previous works focus on learning the student.

In our framework, the learning of the teacher and student are organized into three stages.
In the first stage, the teacher learns its network weights on a training dataset while temporarily
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Figure 6.1: Illustration of learning by teaching. The teacher first learns a topic. Then the teacher
teaches this topic to the student and the student learns this topic. The student performs a test to
check how well he/she masters this topic. Based on the student’s performance on the test, the
teacher re-learns this topic to improve his/her understanding.

fixing its architecture. In the second stage, the teacher performs pseudo-labeling on an unlabeled
dataset and uses the pseudo-labeled dataset to train the student model. Specifically, the teacher
applies its model trained in the first stage to make predictions on unlabeled data examples and
the student model is trained to fit these predictions. In the third stage, the student’s model is eval-
uated on a validation set and the teacher adjusts its architecture based on the student’s validation
performance. The three stages are organized into a three-level optimization framework and are
performed end-to-end in a unified manner, where earlier stages influence later stages and vice
versa. We apply LBT for neural architecture search. Experiments on CIFAR-100, CIFAR-10,
and ImageNet [22] demonstrate the effectiveness of our method.

The major contributions of this paper include:
• Motivated by the teaching-driven learning methodology of humans, we develop a novel

machine learning framework called learning by teaching (LBT). In our approach, a teacher
creates a pseudo-labeled dataset and uses it to train a student model. Based on how the
student performs on the validation dataset, the teacher re-learns its model and re-teaches
the student until the student achieves great validation performance.

• To formulate LBT, we develop a three-level optimization framework. This framework
consists of three learning stages: 1) teacher performs learning; 2) teacher teaches what it
has learned to a student; 3) teacher re-learns based on the performance of the student.

• An efficient algorithm is developed to solve the three-level optimization problem.
• We apply LBT for neural architecture search on CIFAR-100, CIFAR-10, and ImageNet,

where the results show that our method is very effective in searching highly-performing
neural architectures.

6.2 Related Works

6.2.1 Neural Architecture Search
Neural architecture search (NAS) is the task of developing algorithms to automatically find out
architectures that can yield high ML-performance. Existing NAS methods can be categorized

74



into three groups. Methods in the first group [76, 105, 106] are based on reinforcement learning,
where an architecture generation policy is learned by maximizing ML performance on valida-
tion data. Methods in the second group [10, 58, 95] are gradient-based and differentiable. These
methods adopt a network pruning strategy where an overparameterized network with many build-
ing blocks is pruned into the final architecture and the optimal pruning is achieved by minimiz-
ing the validation loss. There have been many efforts devoted to improving differentiable NAS
methods. In P-DARTS [16], the depth of searched architectures is allowed to grow progres-
sively during the training process. Search space approximation and regularization approaches
are developed to reduce computational overheads and improve search stability. PC-DARTS [96]
reduces the redundancy in exploring the search space by sampling a small portion of a super
network. Operation search is performed in a subset of channels with the held-out part bypassed
in a shortcut. Methods in the third group [57, 78] are based on evolutionary algorithms where
architectures are represented as a population. Highly-performing architectures are allowed to
generate offspring while poorly-performing architectures are eliminated.

6.2.2 Teacher-Student Learning
Teacher-student learning has been investigated in knowledge distillation [40], adversarial robust-
ness [11], self-supervised learning [94], etc. Most of these methods are based on pseudo-labeling.
In these existing methods, the focus is to learn a student model with the help of a trained and
fixed teacher model. In these works, the teacher model is not updated. In contrast, our method
focuses on learning a teacher model, by letting it teach a student model. The teacher model
constantly updates itself based on the teaching outcome. Teacher-student learning has been in-
vestigated in several neural architecture search works as well [35, 52, 91]. In these works, when
searching the architecture of a student model, pseudo-labels generated by a trained teacher model
whose architecture is fixed are leveraged. Our work differs from these works in that we focus
on searching the architecture of a teacher model by letting it teach a student model where the
student’s architecture is fixed, whereas the existing works focus on searching the architecture
of a student model by letting it be taught by a teacher where the teacher’s architecture is fixed.
In a recent work [77] which was conducted independently of and in parallel to our work, the
teacher model is updated based on student’s performance. Our work differs from this one in that
our work is based on a three-level optimization framework which searches teacher’s architec-
ture by minimizing student’s validation loss and trains teacher’s network weights before using
teacher to generate pseudo-labels, whereas in [77] the framework is based on two-level optimiza-
tion which has no architecture search and does not train the teacher before using it to perform
pseudo-labeling. In [87], a meta-learning method is developed to learn a deep generative model
which generates synthetic labeled-data. A student model leverages the synthesized data to search
its architecture. Our work differs from this method in that we focus on searching the teacher’s ar-
chitecture via three-level optimization while [87] focuses on searching the student’s architecture
via meta-learning.
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Notation Meaning
A Architecture of the teacher
T Network weights of the teacher
S Network weights of the student
D

(tr)
t Training data of the teacher

D
(val)
t Validation data of the teacher

D
(tr)
s Training data of the student

D
(val)
s Validation data of the student

Du Unlabeled dataset

Table 6.1: Notations in Learning by Teaching

6.3 Methods
In this section, we propose a three-level optimization framework to formalize learning-by-teaching
(LBT) (as shown in Figure 7.2) and develop an efficient optimization algorithm for solving the
LBT problem.

6.3.1 Learning by Teaching
In our framework, there is a teacher model and a student model, which both study how to perform
the same target task. Without loss of generality, we assume the target task is classification. The
eventual goal is to make the teacher achieve better learning outcomes. The way to achieve this
goal to let the teacher teach the student to perform well on the target task. The intuition behind
LBT is that a teacher needs to learn a topic very well in order to teach this topic to a student
clearly. Teaching is performed based on pseudo-labeling [40]: the teacher uses its model to
generate a pseudo-labeled dataset; the student is trained on the pseudo-labeled dataset. The
teacher has a learnable neural architecture A and a set of learnable network weights T . The
student has a predefined architecture (by humans) and a set of learnable network weights S. The
teacher has a training dataset D(tr)

t and a validation dataset D(val)
t . The student has a training

dataset D(tr)
s and a validation dataset D(val)

s . There is an unlabeled dataset Du where pseudo
labeling is performed. In our framework, both the teacher and student perform learning, which
is organized into three stages. In the first stage, the teacher fixes its architecture and trains its
network weights by minimizing the training loss defined on D(tr)

t :

T ∗(A) = minT L(T,A,D
(tr)
t ). (6.1)

The architecture A is needed to calculate the loss on training examples. However, it can-
not be updated by minimizing the training loss. Otherwise, a degenerated solution will be
produced where A has very large capacity to overfit the training examples but will yield poor
prediction outcomes on unseen examples. T ∗(A) is a function of A: a different A will result
in a different training loss L(A, T,D

(tr)
t ); T trained by minimizing L(A, T,D

(tr)
t ) will be dif-

ferent as well. In the second stage, the teacher teaches a student via pseudo-labeling. Given
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Figure 6.2: Learning by teaching. The solid arrows denote a forward pass where predictions are
made and training/validation losses are defined. The dotted arrows denote a backward process
where gradients of losses are calculated and parameters are updated.

an unlabeled dataset Du = {xi}Ni=1, the teacher uses its model T ∗(A) trained in the first stage
to make predictions on Du. Assuming the task is classification with K classes, the predic-
tion f(xi;T

∗(A)) on xi would be a K-dimensional vector, where the k-th element indicates the
probability that xi belongs to the k-th class and the sum of elements in f(xi;T

∗(A)) is one.
Let Dpl(Du, T

∗(A)) = {(xi, f(xi;T
∗(A)))}Ni=1 denote the pseudo-labeled dataset. The network

weights S of the student is trained on Dpl(Du, T
∗(A)) and a human-labeled training set D(tr)

s :

S∗(T ∗(A)) = minS L(S,D(tr)
s ) + λL(S,Dpl(Du, T

∗(A))).

where L(·) denotes a cross-entropy loss and λ is a tradeoff parameter. S∗(T ∗(A)) is a function of
T ∗(A): a different T ∗(A) will result in a different pseudo-labeled dataset Dpl(Du, T

∗(A)) which
will render the training loss to be different; a different training loss will result in a different
S∗(T ∗(A)). In the third stage, the student’s model S∗(T ∗(A)) trained in the second stage is
validated on D(val)

s . Besides, we also validate the teacher’s model T ∗(A) trained in the first stage
on D(val)

t . The validation performances provide feedback on how good the teacher’s architecture
A is. At this stage, A is optimized by minimizing the validation losses:

minA L(T ∗(A), A,D
(val)
t ) + γL(S∗(T ∗(A)), D(val)

s ), (6.2)

where γ is a tradeoff parameter.
Given the three learning stages, we propose a three-level optimization framework to stitch
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them together:

min
A

L(T ∗(A), A,D
(val)
t )) + γL(S∗(T ∗(A)), D

(val)
s )

s.t. S∗(T ∗(A)) = min
S

L(S,D
(tr)
s ) + λL(S,Dpl(Du, T

∗(A)))

T ∗(A) = min
T

L(A, T,D
(tr)
t )

(6.3)

From bottom to top, the three optimization problems correspond to the first, second, and third
stage respectively. The first two optimization problems are on the constraints of the third opti-
mization problem. The three stages are performed end-to-end in a joint manner where different
stages mutually influence each other. T ∗(A) trained in the first stage is used to generate pseudo-
labeled dataset in the second stage; T ∗(A) and S∗(T ∗(A)) trained in the first two stages are
validated in the third stage; after A is updated in the third stage, it will render the training loss
in the first stage to be changed, which accordingly results in a new T ∗(A). For computational
efficiency, we search A in a differentiable way [58]: given an overparameterized network, a sub-
network is carved out as the final architecture. The overparameterized network contains a large
number of basic building blocks such as convolution operations, pooling operations, etc. The
output of each building block is multiplied with a scalar. The search algorithm optimizes these
scalars by minimizing validation losses. In the end, building blocks with largest scalars form the
final architecture.

6.3.2 Optimization Algorithm
In this section, we develop a gradient-based algorithm to solve the learning by teaching (LBT)
problem. Drawing insights from [58], we calculate the gradient of L(A, T,D

(tr)
t ) w.r.t T , update

T by one-step gradient descent and get T ′, which is used as an approximation of T ∗(A). We sub-
stitute this approximation into L(S,D

(tr)
s ) + λL(S,Dpl(Du, T

∗(A))), yielding an approximated
objective Os. Similarly, we approximate S∗(T ∗(A)) using one-step gradient descent update of
S using the gradient of Os. Lastly, we substitute the approximations of T ∗(A) and S∗(T ∗(A))

into L(T ∗(A), D
(val)
t )) + γL(S∗(T ∗(A)), D

(val)
s ) and perform gradient-descent update of A by

minimizing the approximated validation loss. Let∇2
Y,Xf(X, Y ) denote ∂f(X,Y )

∂X∂Y
.

First, we approximate T ∗(A) using

T ′ = T − ξt∇TL(T,A,D
(tr)
t ) (6.4)

where ξt is a learning rate. Substituting T ′ into L(S,D
(tr)
s ) + λL(S,Dpl(Du, T

∗(A))) results
in an approximated objective Os = L(S,D

(tr)
s ) + λL(S,Dpl(Du, T

′)). Next, we approximate
S∗(T ∗(A)) using one-step gradient descent update of S w.r.t Os:

S ′ = S − ξs∇S(L(S,D(tr)
s ) + λL(S,Dpl(Du, T

′))). (6.5)

Finally, we plug T ′ and S ′ into L(T ∗(A),

D
(val)
t )) +γL(S∗(T ∗(A)), D

(val)
s ) and get Ov = L(T ′, D

(val)
t ) +γL(S ′, D

(val)
s ). We can update the

teacher’s architecture A by descending the gradient of Ov w.r.t A:

A← A− η(∇AL(T ′, A,D
(val)
t ) + γ∇AL(S ′, D

(val)
s )) (6.6)
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where
∇AL(T ′, A,D

(val)
t ) =

∇AL(T − ξt∇TL(T,A,D
(tr)
t ), A,D

(val)
t ) =

−ξt∇2
A,TL(T,A,D

(tr)
t )∇T ′L(T ′, A,D

(val)
t ) +∇AL(T ′, A,D

(val)
t )

(6.7)

The matrix-vector multiplication in the first term on the third line is computationally expen-
sive. To reduce computational cost, following [58], we approximate the multiplication using a
finite difference:

∇2
A,TL(T,A,D

(tr)
t )∇T ′L(T ′, A,D

(val)
t ) ≈ 1

2α
(∇AL(T+, A,D

(tr)
t )−∇AL(T−, A,D

(tr)
t )),

(6.8)
where T± = T ± α∇T ′L(T ′, A,D

(val)
t ) and α is 0.01/‖∇T ′L(T ′, A,D

(val)
t )‖2.

For∇AL(S ′, D
(val)
s ) in Eq.(7.10), it can be calculated as ∂S′

∂A
∇S′L(S ′, D

(val)
s ) according to the

chain rule, where

∂S ′

∂A
=
∂(S − ξs∇S(L(S,D

(tr)
s ) + λL(S,Dpl(Du, T

′))))

∂A
(6.9)

=
∂(−ξsλ∇SL(S,Dpl(Du, T

′)))

∂A
(6.10)

= −ξsλ
∂T ′

∂A
∇2
T ′,SL(S,Dpl(Du, T

′)) (6.11)

For ∂T ′

∂A
, it can be calculated as:

∂T ′

∂A
=
∂(T − ξt∇TL(T,A,D

(tr)
t ))

∂A
= −ξt∇2

A,TL(T,A,D
(tr)
t ) (6.12)

The algorithm for solving LBT is presented in Algorithm 7.

Algorithm 6: Optimization algorithm for learning by teaching
while not converged do

1. Update the teacher’s network weights T using Eq.(6.4)
2. Update the student’s network weights S using Eq.(6.5)
3. Update the teacher’s architecture A using Eq.(7.10)

end

6.4 Experiments
In this section, we apply learning-by-teaching (LBT) to search neural architectures in image
classification tasks. We follow the experimental protocol in [58], consisting of two phrases:
one for architecture search and the other for architecture evaluation. In the search phrase, an
optimal cell is searched by minimizing the validation loss. In the evaluation phrase, the searched
cell is replicated and composed into a large network, which is trained from scratch on training
and validation sets. Its performance is reported on the test set. More hyperparameter settings,
additional results, and significance tests of results are deferred to the supplements.
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6.4.1 Datasets
The experiments were conducted on three image classification datasets: CIFAR-10, CIFAR-100,
and ImageNet [22], with 10, 100, and 1000 classes respectively. For CIFAR-10 and CIFAR-100,
each of them is split into a 25K training set, a 25K validation set, and a 5K test set. The training
set is used as D(tr)

t of the teacher and D(tr)
s of the student. The validation set is used as D(val)

t of
the teacher and D(val)

s of the student. For experiments on CIFAR-10, input images in CIFAR-100
(removing labels) are used as the unlabeled dataset Du. For experiments on CIFAR-100, input
images in CIFAR-10 (removing labels) are used as the unlabeled dataset Du. For ImageNet, it is
split into a training set of 1.2M images and a test set of 50K images.

6.4.2 Experimental Settings
In LBT, for the search space of A, we experimented the spaces in DARTS [58], P-DARTS [16],
and PC-DARTS [96]. These search spaces are similar, with the following candidate operations:
3×3 and 5×5 separable convolutions, 3×3 and 5×5 dilated separable convolutions, 3×3 max
pooling, 3×3 average pooling, identity, and zero. For the student’s architecture, we experimented
with ResNet-18 and ResNet-50 [37]. λ and γ are both set to 1.

During architecture search, for CIFAR-10 and CIFAR-100, the teacher’s architecture is a
stack of 8 cells, each consisting of 7 nodes. The initial channel number was set to 16. The rest
hyperparameters for the teacher’s architecture and network weights follow those in DARTS, P-
DARTS, and PC-DARTS. The search algorithm ran for 30 epochs in LBT-DARTS with a batch
size of 32 and ran for 50 epochs in LBT-PC-DARTS, with a batch size of 96. Network weights
are optimized using SGD, with an initial learning rate of 0.025 (adjusted using a cosine decay
scheduler) for LBT-DARTS and an initial learning rate of 0.1 for LBT-PC-DARTS, a momentum
of 0.9, and a weight decay of 3e-4. For architecture search on ImageNet, following [96], we
randomly sample 10% of the 1.2M ImageNet images as D(tr)

t and D(tr)
s in LBT, randomly sample

2.5% of the 1.2M images as D(val)
t and D(val)

s , and randomly sample another 10% of the 1.2M
images as Du.

During architecture evaluation, for CIFAR-10 and CIFAR-100, 20 copies of the optimal cell
searched in the search phrase are stacked into a large network, which is trained using the com-
bined training and validation datasets. The initial channel number was set to 36. The SGD opti-
mizer is used for weights training, with an initial learning rate of 0.025, a cosine decay scheduler,
a batch size of 96, a momentum of 0.9, a weight decay of 3e-4, and epoch number of 600. These
experiments were conducted on a Tesla v100 GPU.

For ImageNet, we evaluate the architectures searched by PC-DARTS on the subset of Ima-
geNet and architectures searched by DARTS-2nd and P-DARTS on CIFAR-10 and CIFAR-100,
by stacking 14 searched cells into a large network and training it on the 1.2M training images
and reporting its performance on the 50K test images. The initial channel number was set to 48.
The network was trained for 250 epochs with a batch size of 1024, an initial learning rate of 0.5,
and a weight decay of 3e-5, on 8 Tesla v100s. Each LBT experiment was repeated for ten times
with different random seeds. Mean and standard deviation of the 10 runs are reported.
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6.4.3 Results
In Table 6.2, we compare different NAS methods in terms of classification error on the test set of
CIFAR-100, number of network weights, and search cost measured using GPU days. From these
results, we observe the following. First, with the help of our proposed learning-by-teaching
(LBT) framework, the architectures searched by various methods including DARTS, P-DARTS,
and PC-DARTS can be greatly improved. For example, applying LBT to DARTS-2nd, the error
is reduced from 20.58% to 17.06%. With the assistance of LBT, the error of P-DARTS decreases
from 17.49% to 16.29%. Without using LBT, the error of PC-DARTS is 17.96%; adding LBT
reduces this error to 16.88%. These results strongly demonstrate that LBT is an effective learn-
ing framework that helps to improve a wide variety of NAS methods. In our method, the teacher
model improves its learning ability by teaching a student model to perform well on the classifi-
cation task. The student is trained on the pseudo-labeled dataset created by the teacher. If the
student does not perform well on the validation set, that means the pseudo labels are not correct,
which indicates the teacher’s model is not accurate. To avoid such an outcome, the teacher en-
forces itself to learn better to generate correct pseudo labels. Second, a stronger student helps
the teacher to learn better. Here we consider a student model is stronger if its architecture (man-
ually designed) is more powerful and expressive. For example, ResNet with 50 layers (RN50)
is generally considered to have stronger representation learning power than ResNet with 18 lay-
ers (RN18). In LBT applied to DARTS, P-DARTS, and PC-DARTS, we experimented with
two student models with RN50 and RN18 as their architectures respectively. As can be seen,
LBT with RN50 as the student achieves better performance than LBT with RN18 as the student.
For example, on DARTS-2nd, LBT with RN50 achieves an error of 17.06% while LBT with
RN18 achieves an error of 17.93%. As another example, on P-DARTS, the error achieved by
LBT(RN50) is 16.29%, which is lower than the 16.53% error achieved by LBT(RN18). The
reason is that to teach a stronger student to learn better, the teacher has to be even stronger.
For example, given a relatively weak student such as a CNN with only three layers, since there
is a large room for the student to improve, an ordinary teacher such as a CNN with ten layers
would be sufficient to teach the student to perform better. However, if the student (e.g., ResNet
with 50 layers) is very strong whose performance is already high, it is very challenging to teach
the student to improve unless the teacher is even stronger. To better train a strong student, the
pseudo-labels generated by the teacher are required to be highly accurate. To achieve this goal,
the teacher is forced to escalate the performance of its model to an excellent level. Third, our
method LBT(RN50,P-DARTS) achieves the lowest error among all methods in this table. This
shows that our method is very competitive in bringing the NAS performance to a state-of-the-art
level. Fourth, while our LBT framework can greatly help to improve the quality of searched
architectures, it does not substantially increase the number of model parameters or search cost.
As shown in the third column and fourth column, the model size and search cost of our methods
are similar to those of baselines.

In Table 6.3, we show the results on CIFAR-10, including the classification error on the test
set, number of model parameters, and search cost measured by GPU days. From this table, we
make similar observations as those in Table 6.2. First, our proposed LBT framework is widely
effective in helping different NAS methods to improve the quality of searched architectures.
For example, applying LBT to DARTS-2nd reduces the error from 2.76% to 2.61%. This fur-
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Method Error(%) Param(M) Cost

*ResNet [36] 22.10 1.7 -
*DenseNet [45] 17.18 25.6 -
*PNAS [56] 19.53 3.2 150
*ENAS [76] 19.43 4.6 0.5
*AmoebaNet [78] 18.93 3.1 3150
*GDAS [25] 18.38 3.4 0.2
*R-DARTS [100] 18.01±0.26 - 1.6
*DARTS− [18] 17.51±0.25 3.3 0.4
*DropNAS [42] 16.39 4.4 0.7
†DARTS-1st [58] 20.52±0.31 1.8 0.4

LBT(RN18,DARTS-1st) (ours) 19.28±0.13 1.9 0.5
LBT(RN50,DARTS-1st) (ours) 18.74±0.09 1.9 0.6

*DARTS-2nd [58] 20.58±0.44 1.8 1.5
LBT(RN18,DARTS-2nd) (ours) 17.93±0.18 2.0 1.9
LBT(RN50,DARTS-2nd) (ours) 17.06±0.22 2.1 2.2

*P-DARTS [16] 17.49 3.6 0.3
LBT(RN18,P-DARTS) (ours) 16.53±0.16 3.6 0.5
LBT(RN50,P-DARTS) (ours) 16.29±0.07 3.7 0.6
†PC-DARTS [96] 17.96±0.15 3.9 0.1

LBT(RN18,PC-DARTS) (ours) 17.21±0.13 3.8 0.1
LBT(RN50,PC-DARTS) (ours) 16.88±0.09 3.8 0.2

Table 6.2: Results on CIFAR-100, including classification error (%) on the test set, number of
model weights (millions), and search cost (GPU days). LBT(RN18,DARTS-1st) represents that
in LBT the search space is the same as that of DARTS-1st and the architecture of the student is
ResNet-18. Similar meanings hold for other notations in such a format. RN50 denotes ResNet-
50. DARTS-1st and DARTS-2nd indicates that first-order and second-order approximation is
used in DARTS’ optimization algorithm. * denotes that the results are taken from DARTS− [18].
† denotes that we re-ran this method for 10 times. The search cost is measured by GPU days on
a Tesla v100.

ther demonstrates that by teaching a student model to learn well, the teacher can improve itself
greatly. In the GTN [87] baseline approach where the architecture of a student is searched by
leveraging the synthetic data generated by a trainable generative model, the classification error
is 2.92%, which is much worse than those achieved by our methods, while the number of pa-
rameters in GTN is twice more than ours. Setting the network width to 128, GTN achieves an
error of 2.42%; however, the resulting number of parameters in GTN is about 30 times more
than ours. GTN focuses on searching the student’s architecture while our method focuses on
searching the teacher’s architecture. These results demonstrate that searching teacher’s architec-
ture is more advantageous than searching student’s architecture. Second, using ResNet with 50
layers (RN50) as the student results in better performance than using ResNet-18 (RN18), which
further demonstrates that teaching a stronger student can drive the teacher to learn better. Third,
while achieving better classification accuracy than baselines, our method does not substantially
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Method Error(%) Param(M) Cost

*DenseNet [45] 3.46 25.6 -
*HierEvol [57] 3.75±0.12 15.7 300
*NAONet-WS [62] 3.53 3.1 0.4
*PNAS [56] 3.41±0.09 3.2 225
*ENAS [76] 2.89 4.6 0.5
*NASNet-A [106] 2.65 3.3 1800
*AmoebaNet-B [78] 2.55±0.05 2.8 3150
*R-DARTS [100] 2.95±0.21 - 1.6
*GDAS [25] 2.93 3.4 0.2
*SNAS [95] 2.85 2.8 1.5
*BayesNAS [103] 2.81±0.04 3.4 0.2
*MergeNAS [93] 2.73±0.02 2.9 0.2
*NoisyDARTS [19] 2.70±0.23 3.3 0.4
*ASAP [69] 2.68±0.11 2.5 0.2
*SDARTS [14] 2.61±0.02 3.3 1.3
*DropNAS [42] 2.58±0.14 4.1 0.6
*PC-DARTS [96] 2.57±0.07 3.6 0.1
*FairDARTS [17] 2.54 3.3 0.4
*DrNAS [15] 2.54±0.03 4.0 0.4
*GTN [87] 2.92±0.06 8.2 0.67
*GTN(F=128) [87] 2.42±0.03 97.9 0.67
*DARTS-1st [58] 3.00±0.14 3.3 0.4

LBT(RN18,DARTS-1st) (ours) 2.87±0.05 3.2 0.6
LBT(RN50,DARTS-1st) (ours) 2.79±0.07 3.3 0.7

*DARTS-2nd [58] 2.76±0.09 3.3 1.5
LBT(RN18,DARTS-2nd) (ours) 2.65±0.03 3.4 1.9
LBT(RN50,DARTS-2nd) (ours) 2.61±0.05 3.4 2.1

*P-DARTS [16] 2.50 3.4 0.3
LBT(RN18,P-DARTS) (ours) 2.64±0.11 3.4 0.4
LBT(RN50,P-DARTS) (ours) 2.57±0.15 3.4 0.5

*PC-DARTS [96] 2.57±0.07 3.6 0.1
LBT(RN18,PC-DARTS) (ours) 2.59±0.03 3.7 0.1
LBT(RN50,PC-DARTS) (ours) 2.56±0.04 3.7 0.2

Table 6.3: Results on CIFAR-10, including classification error (%) on the test set, number of
model weights (millions), and search cost (GPU days). * denotes that the results are taken from
DARTS− [18], NoisyDARTS [19], and DrNAS [15]. The rest notations are the same as those in
Table 6.2.

increase the model size or search cost compared with baselines.
The results on ImageNet are shown in Table 6.4, including top-1 and top-5 classification

errors on the test set, number of weight parameters (millions), and search costs (GPU days).
LBT(RN50,DARTS-2nd,CIFAR10), which is the architecture searched by applying LBT to DARTS-
2nd on CIFAR10 with ResNet-50 as the student, achieves lower error than DARTS-2nd(CIFAR10)
which does not use LBT. Similarly, LBT(RN50,P-DARTS,CIFAR10) outperforms P-DARTS(CIFAR10),
LBT(RN50,P-DARTS,CIFAR100) outperforms P-DARTS(CIFAR100), and LBT(RN50,PC-DARTS,ImageNet)
outperforms PC-DARTS(ImageNet). These results again demonstrate the effectiveness of our
method in improving a model by letting it teach another model to learn well.
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Method
Top-1 Top-5 Param Cost

Error (%) Error (%) (M) (GPU days)

*Inception-v1 [88] 30.2 10.1 6.6 -
*MobileNet [43] 29.4 10.5 4.2 -
*ShuffleNet 2× (v2) [63] 25.1 7.6 7.4 -
*NASNet-A [106] 26.0 8.4 5.3 1800
*PNAS [56] 25.8 8.1 5.1 225
*MnasNet-92 [89] 25.2 8.0 4.4 1667
*AmoebaNet-C [78] 24.3 7.6 6.4 3150
*SNAS-CIFAR10 [95] 27.3 9.2 4.3 1.5
*BayesNAS-CIFAR10 [103] 26.5 8.9 3.9 0.2
*PARSEC-CIFAR10 [12] 26.0 8.4 5.6 1.0
*GDAS-CIFAR10 [25] 26.0 8.5 5.3 0.2
*DSNAS-ImageNet [44] 25.7 8.1 - -
*SDARTS-ADV-CIFAR10 [14] 25.2 7.8 5.4 1.3
*PC-DARTS-CIFAR10 [96] 25.1 7.8 5.3 0.1
*ProxylessNAS-ImageNet [10] 24.9 7.5 7.1 8.3
*FairDARTS-CIFAR10 [17] 24.9 7.5 4.8 0.4
*FairDARTS-ImageNet [17] 24.4 7.4 4.3 3.0
*DrNAS-ImageNet [15] 24.2 7.3 5.2 3.9
*DARTS−-ImageNet [18] 23.8 7.0 4.9 4.5
*DARTS+-CIFAR100 [53] 23.7 7.2 5.1 0.2
*DARTS-2nd(CIFAR10) [58] 26.7 8.7 4.7 1.5

LBT(RN50,DARTS-2nd,CIFAR10) (ours) 25.5 7.9 4.8 2.1
*P-DARTS(CIFAR10) [16] 24.4 7.4 4.9 0.3

LBT(RN50,P-DARTS,CIFAR10) (ours) 24.1 7.2 4.9 0.5
*P-DARTS(CIFAR100) [16] 24.7 7.5 5.1 0.3

LBT(RN50,P-DARTS,CIFAR100) (ours) 24.2 7.1 5.3 0.6
*PC-DARTS(ImageNet) [96] 24.2 7.3 5.3 3.8

LBT(RN50,PC-DARTS,ImageNet) (ours) 23.5 6.8 5.4 4.1

Table 6.4: Results on ImageNet, including top-1 and top-5 classification errors on the test set,
number of model weights (millions), and search cost (GPU days). * denotes that the results
are taken from DARTS− [18] and DrNAS [15]. The rest notations are the same as those in Ta-
ble 6.2. From top to bottom, on the first, second, and third panel are manually-designed networks,
non-differentiable search methods, and differentiable search methods. LBT(RN50,DARTS-
2nd,CIFAR10) means the architecture is searched using LBT on CIFAR-10 with ResNet-50 as
the student, where the search space is the same as that in DARTS-2nd. Similar meanings hold
for other notations like this.

6.4.4 Ablation Studies
In this section, we perform several ablation studies to better understand the individual learning
stages in LBT. For each ablation setting, we compare it with the full LBT framework.
• Ablation setting 1. In this setting, the teacher updates its architecture by minimizing the

validation loss of the student only, without considering the validation loss of itself. The corre-
sponding formulation is:

min
A

L(S∗(T ∗(A)), D
(val)
s )

s.t. S∗(T ∗(A)) = min
S

L(S,D
(tr)
s ) + λL(S,Dpl(Du, T

∗(A)))

T ∗(A) = min
T

L(A, T,D
(tr)
t )
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In this study, λ is set to 1. The student’s architecture is ResNet-18. LBT is applied to DARTS-
2nd.

• Ablation setting 2. In this setting, in the second stage of LBT, only the pseudo-labeled dataset
is used to train the student; D(tr)

s labeled by humans is not used. The corresponding formulation
is:

min
A

L(T ∗(A), A,D
(val)
t )) + γL(S∗(T ∗(A)), D

(val)
s )

s.t. S∗(T ∗(A)) = min
S

L(S,Dpl(Du, T
∗(A)))

T ∗(A) = min
T

L(A, T,D
(tr)
t )

In this study, γ is set to 1. The student’s architecture is ResNet-18. LBT is applied to DARTS-
2nd.

• Ablation study on λ. We investigate how the teacher’s test error changes with the tradeoff
parameter λ in Eq.(6.3). In this study, the other tradeoff parameter γ in Eq.(6.3) is set to 1. For
either CIFAR-100 or CIFAR-10, from their training set and validation set, 5K examples are
uniformly sampled to form a new test set. Architecture search is performed on the remaining
training and validation sets. Architecture evaluation result is reported on the 5K new test set.
Student’s architecture is ResNet-18. LBT is applied to DARTS-2nd.

• Ablation study on γ. We investigate how the teacher’s test error changes with the tradeoff
parameter γ in Eq.(6.3). In this study, the other tradeoff parameter λ is set to 1. Similar to
the ablation study on λ, the test error is reported on the 5K dataset. Student’s architecture is
ResNet-18. LBT is applied to DARTS-2nd.

In Table 6.5, we show the classification errors on the test set of CIFAR-10 and CIFAR-100
in ablation setting 1. As can be seen, on both datasets, minimizing both student’s validation
loss and teacher’s validation loss results in better architectures for the teacher than minimizing
student’s validation only. The reason is that student’s validation loss indirectly measures the
quality of the teacher’s architecture. How well the student performs depends on not only how
well the teacher teaches the student but also how strong the student itself is. If the student is a
very strong learner, its validation loss may be largely determined by the student itself and less
influenced by the teacher. In this case, student’s validation would be a relatively weak signal for
guiding the learning of the teacher. In contrast, the validation loss of the teacher directly depends
on its architecture and can serve as a direct (hence strong) signal to guide the teacher to learn.
In the end, combining the direct signal (teacher’s validation loss) and indirect signal (student’s
validation loss) together is more beneficial than using the indirect signal only.

In Table 6.6, we show the classification errors on the test sets of CIFAR-10 and CIFAR-100
in ablation setting 2. We can see that using both the pseudo-labeled dataset and human-labeled
dataset to train the student yields better performance than using the pseudo-labeled dataset only.
The reason is that since the pseudo-labels are automatically generated by a model, they are not
entirely reliable. Trained on less reliable labels, the student’s model may have low quality and a
poorly-performing student cannot drive the teacher to learn better. This risk can be reduced by
incorporating human-provided labels which are more reliable. As a result, using human labels
and pseudo-labels jointly yields better performance than solely using pseudo-labels.

In Figure 7.3, we show how the classification errors of LBT on CIFAR-10 and CIFAR-100
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Method Error (%)
Student only (CIFAR-100) 20.27±0.24
Student + Teacher (CIFAR-100) 17.93±0.18
Student only (CIFAR-10) 3.01±0.08
Student + teacher (CIFAR-10) 2.61±0.05

Table 6.5: Classification errors in ablation setting 1. “Student only” means that only the student’s
validation loss is used to update the teacher’s architecture. “Student + teacher” means that both
the student’s validation loss and teacher’s validation loss are minimized to update the teacher’s
architecture.

Method Error (%)
Pseudo labels only (CIFAR-100) 19.82±0.31
Pseudo labels + human labels (CIFAR-100) 17.93±0.18
Pseudo labels only (CIFAR-10) 2.93±0.07
Pseudo labels + human labels (CIFAR-10) 2.61±0.05

Table 6.6: Classification errors in ablation setting 2. “Pseudo labels only” means in the second
learning stage, only the pseudo-labeled dataset is used to train the student. “Pseudo labels +
human labels” means both the pseudo-labeled dataset and a human-labeled dataset D(tr)

s are used
to train the student.

vary as λ increases. From the plot on CIFAR-100, we observe the following. First, when λ
increases from 0.5 to 1, the error decreases. This is because a larger λ incurs a stronger effect
of teaching, where the training of the student relies more on the pseudo-labeled dataset created
by the teacher. When the teaching effect is strong, the teacher can gain more feedback from the
student’s performance, which helps the teacher to learn better. Second, if we continue to increase
λ, the performance becomes worse. The reason is that if λ is too large, the teaching effect would
be excessively strong. Under such circumstances, the student is mainly trained on the pseudo
labels which are less reliable than human-provided labels and consequently its model may be
of low quality. A mediocre student will not be very helpful in driving the teacher to improve.
Similar phenomenon are observed from the plot on CIFAR-10.

In Figure 6.4, we show how the classification errors of LBT vary as we increase γ. As
can be seen, on CIFAR-100, when we increase γ from 0.1 to 1, the error decreases. This is
because a larger γ encourages the teacher to pay more attention to the feedback obtained from
the student. This feedback is valuable because the validation performance of the student reflects
the correctness of the pseudo-labels generated by the teacher and the quality of pseudo-labels
reflects the quality of the teacher’s architecture. Paying more attention to such feedback enables
the teacher to identify its weakness and strive for improvement. However, if γ is too large, the
learning of the teacher’s architecture would be guided excessively by student’s validation loss
which is an indirect (hence weaker signal) but inadequately influenced the validation loss of the
teacher itself which is a direct (hence stronger signal). Similar observations can be made from
the plot on CIFAR-10 as well.
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Figure 6.3: How errors change as λ increases.
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Figure 6.4: How errors change as γ increases.

6.5 Conclusions
Motivated by the teaching-driven learning methodology of humans, we propose a novel machine
learning framework called learning by teaching (LBT). LBT improves the training of a teacher
model by encouraging the teacher to teach what it has learned to a student model. Based on
how the student performs on a validation set, the teacher refines its model. The intuition behind
LBT is that to be able to teach others to well accomplish a task, the teacher itself needs to
thoroughly understand this task and know how to perform it excellently. We develop a multi-level
optimization framework to formulate LBT and the framework consists of three learning stages:
the teacher learns; the teacher teaches the student by pseudo-labeling; the teacher improves its
architecture based on the validation results of itself and of the student. Our framework is applied
for neural architecture search on CIFAR-100, CIFAR-10, and ImageNet. The results demonstrate
the effectiveness of our method.
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Chapter 7

Learning by Ignoring

7.1 Introduction
In human learning, a widely-practiced effective learning methodology is learning by ignoring.
For example, in course learning, given a large collection of practice problems provided in the
textbook, the teacher selects a subset of problems as homework for the students to practice instead
of using all problems in the textbook. Some practice problems are ignored because 1) they are
too difficult which might confuse the students; 2) they are too simple which are not effective in
helping the students to practice their knowledge learned during lectures; 3) they are repetitive.
The study in [20] shows that learning to ignore certain things is powerful for helping people
focus.

Drawing inspirations from this effective human-learning method, we are intrigued in explor-
ing whether this method is helpful for training better machine learning models as well. We
propose a novel machine learning framework called learning by ignoring (LBI) (as illustrated in
Figure 7.1). In this framework, a model is trained to perform a target task. The model consists
of a data encoder and a task-specific head. The encoder is trained in two phrases: pretrain-
ing and finetuning, conducted on a pretraining dataset and a finetuning dataset. Pretraining is a
commonly used technique in deep learning to learn more effective representations for alleviat-
ing overfitting. Given a target task where the amount of training data is limited, training deep
neural networks on this small-sized dataset has high risk of overfitting. To address this problem,
one can pretrain the feature extraction layers in the network on large-sized external data from
some source domain, then finetune these layers on the target data. The abundance of source
data enables the network to learn powerful representations that are robust to overfitting. And
such representation power can be leveraged to assist in the learning of the target task with more
resilience to overfitting.

Some pretraining data examples have a domain difference with the finetuning dataset, ren-
dering them not suitable to pretrain the data encoder that will be used for performing the target
task. We would like to identify such out-of-domain data examples and exclude them from the
pretraining process. To achieve this goal, we associate each pretraining example with an ignoring
variable a ∈ [0, 1]. If a is close to 0, it means that this example should be ignored. We develop
a three-level framework (involving three learning stages) to automatically learn these ignoring
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Figure 7.1: Illustration of learning by ignoring. Void circles denote ignored pretraining data
examples. Given a set of intermediately selected pretraining examples, they are used to pretrain
a model, which is then finetuned and validated. The validation performance provides guidance
on what pretraining examples should be ignored in the next round of learning. This process
iterates until convergence.

variables. In the first learning stage, we pretrain a data encoder V by minimizing a weighted
pretraining loss: the loss defined on each pretraining example is multiplied with the ignoring
variable of this example. If an example x should be ignored, its a is close to 0; multiplying a to
the loss of xmakes this loss close to 0, which effectively excludes x from the pretraining process.
In this stage, these ignoring variables A = {a} are fixed. They will be updated at a later stage.
Note that the optimally pretrained encoder V ∗(A) is a function of A since V ∗(A) is a function of
the weighted loss and the weighted loss is a function of A. In the second stage, we train another
data encoder W on the finetuning dataset. During the training of W , we encourage it to be close
to the optimal encoder V ∗(A) trained in the first stage by minimizing the squared L2 distance
between W and V ∗(A). V ∗(A) contains information distilled from non-ignored pretraining ex-
amples. Encouraging W to be close to V ∗(A) effectively achieves the goal of pretraining W on
these non-ignored examples. Note that the optimally trained encoder W ∗(V ∗(A)) is a function
of V ∗(A). In the third stage, we apply W ∗(V ∗(A)) to make predictions on the validation set
of the target task and update A by minimizing the validation loss. To summarize, we aim to
learn an ignoring variable for each pretraining example so that the data encoder pretrained on
non-ignored examples achieves the optimal performance on the validation set after finetuning.
The three stages are conducted end-to-end in a joint manner. Experiments on various datasets
demonstrate the effectiveness of our method.

The major contributions of this chapter is as follows:
• Drawing inspirations from the ignoring-driven learning methodology of humans, we pro-

pose a novel machine learning framework called learning by ignoring (LBI). Our frame-
work automatically identifies pretraining data examples that have large domain shift from
the target distribution by learning an ignoring variable for each example and excludes them
from the pretraining process.

• We formulate LBT as a multi-level optimization framework involving three learning stages:
pretraining by minimizing the losses weighed by ignoring variables; finetuning; updating
the ignoring variables by minimizing the validation loss.
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• An efficient gradient-based algorithm is developed to solve the LBI problem.
• Experiments on various datasets demonstrate the effectiveness of our method.

7.2 Related Works
Due to space limit, we defer the review of domain adaptation works to the supplements.

Data Re-weighting and Selection. Several approaches have been proposed for data selection.
Matrix column subset selection [7, 23] aims to select a subset of data examples that can best
reconstruct the entire dataset. Similarly, coreset selection [2] chooses representative training
examples in a way that models trained on the selected examples have comparable performance
with those trained on all training examples. These methods perform data selection and model
training separately. As a result, the validation performance of the model cannot be used to guide
data selection. Ren et al. [79] proposes a meta learning method to learn the weights of training
examples by performing a meta gradient descent step on the weights of the current mini-batch
of examples. Shu et al. [83] propose a method which can adaptively learn an explicit weighting
function directly from data. These works focus on selecting target examples using an one-step
meta-learning framework while our work focuses on selecting source examples using a three-
level optimization framework.

Pretraining. Arguably, the most popular pretraining approach is supervised pretraining (SP) [71],
which learns the weight parameters of a representation network by solving a supervised source
task, i.e., correctly mapping input data examples to their labels (e.g., classes, segmentation
masks, etc.). Recently, self-supervised learning [13, 66, 70? ], as an unsupervised pretrain-
ing approach, has achieved promising success and outperforms supervised pretraining in a wide
range of applications. Similar to SP, self-supervised pretraining (SSP) also solves predictive
tasks. But the output labels in SSP are constructed from the input data, rather than annotated
by humans as in SP. The auxiliary predictive tasks in SSP could be predicting whether two aug-
mented data examples originate from the same original data example [13, 39, 66? ], inpainting
masked regions in images [74], etc.

7.3 Methods
Our framework aims to learn a machine learning model for accomplishing a target task T . The
ML model is composed of a data encoder W and a task-specific head H . For instance, in a text
classification task, the data encoder can be a BERT [24] model which produces an embedding of
the input text and the classification head can be a multi-layer perceptron which predicts the class
label of this text based on its embedding. The learning is performed in two phrases: pretraining
and finetuning. In the pretraining phrase, we pretrain the data encoderW on a pretraining dataset
D(pre) = {d(pre)

i }Mi=1 by solving a pretraining task P . P could be the same as T . In this case, W
and the task-specific head H are trained jointly on D(pre). P could be different from T as well.
Under such circumstances, P has its own task-specific head J while sharing the same encoderW
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Notation Meaning
M Number of pretraining examples
N Number of finetuning examples
O Number of validation examples
d(pre)
i The i-th pretraining data example
ai Ignoring variable of d(pre)

i in pretraining
bi Ignoring variable of d(pre)

i in finetuning
d(tr)
i The i-th finetuning data example
d(val)
i The i-th validation example
W Encoder in finetuning
V Encoder in pretraining
H Head of the target task
J Head of the pretraining task

Table 7.1: Notations in learning by ignoring

with T . J and W are trained jointly on D(pre). Oftentimes, some pretraining data examples have
a domain shift with the finetuning dataset. This domain shift renders these examples not suitable
for pretraining the encoder. We aim to automatically identify such examples using ignoring
variables and exclude them from the pretraining process. To achieve this goal, we multiply the
loss of a pretraining example xwith an ignoring variable a ∈ [0, 1]. If a is close to 0, it means that
this example should be ignored; accordingly, the loss (after multiplied with a) is made close to
0, which effectively excludes x from the pretraining process. We aim to automatically learn the
values of these ignoring variables, which will be detailed later. After pretraining, the encoder is
finetuned on the training dataset D(tr) = {d(tr)

i }Ni=1. For mathematical convenience, we formulate
“pretraining” in the following way: in the pretraining phrase, we train another encoder V ; in the
finetuning phrase, we encourage the encoder W to be close to the optimally pretrained encoder
V ∗ where the closeness is measured using squared L2 distance ‖W − V ∗‖2

2.
Overall, the learning is performed in three stages. In the first stage, the model trains the

encoder V and the head J specific to the pretraining task P on the pretraining dataset D(pre) =
{d(pre)

i }Mi=1, with the ignoring variables A = {ai}Mi=1 fixed:

V ∗(A) = minV,J
M∑
i=1

aiL(V, J, d
(pre)
i ). (7.1)

After training, the optimal head is discarded. The optimal encoder V ∗(A) is retained for future
use. The ignoring variables A are needed to make predictions and calculate training losses. But
they should not be updated in this stage. Otherwise, the values of A will all be zero. Note that
V ∗(A) is a function of A since it is a function of

∑M
i=1 aiL(V, J, d

(pre)
i ) and

∑M
i=1 aiL(V, J, d

(pre)
i )

is a function of A.
In the second stage, the model trains its data encoder W and task-specific head H by min-

imizing the training loss of the target task T . During training, W is encouraged to be close to
V ∗(A) trained in the pretraining phrase by minimizing the squared L2 distance ‖W − V ∗(A)‖2

2.
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This implicitly achieves the effect of pretraining W on the non-ignored pretraining examples.
The optimization problem in the second stage is:

W ∗(V ∗(A)), H∗ = min
W,H

N∑
i=1

L(W,H, d
(tr)
i ) + λ‖W − V ∗(A)‖2

2, (7.2)

where λ is a tradeoff parameter. Note that W ∗(V ∗(A)) is a function of V ∗(A) since it is a
function of ‖W − V ∗(A)‖2

2, which is a function of V ∗(A).
In the third stage, we use the trained model consisting of W ∗(V ∗(A)) and H∗ to make pre-

dictions on the validation dataset D(val) of the target task T . We update A by minimizing the
validation loss.

minA
O∑
i=1

L(W ∗(V ∗(A)), H∗, d
(val)
i ). (7.3)

The three stages mutually influence each other: V ∗(A) trained in the first stage is needed to
calculate the loss function in the second stage; W ∗(V ∗(A)) trained in the second stage is needed
to calculate the objective function in the third stage; the ignoring variables A updated in the third
stage alter the loss function in the first stage, which subsequently changes V ∗(A) andW ∗(V ∗(A))
as well.

Putting the three learning stages together, we formulate LBI as the following three-level
optimization problem:

minA
∑O

i=1 L(W ∗(V ∗(A)), H∗, d
(val)
i )

s.t. W ∗(V ∗(A)), H∗ = minW,H
∑N

i=1 L(W,H, d
(tr)
i ) + λ‖W − V ∗(A)‖2

2

V ∗(A) = minV,J
∑M

i=1 aiL(V, J, d
(pre)
i )

(7.4)

This formulation consists of three optimization problems. The two inner optimization problems
(on the constraints) represent the first and second learning stage respectively. The outer optimiza-
tion problem represents the third learning stage. The three stages are illustrated in Figure 7.2.

If the pretaining task and target task are the same, in the second stage we can use the pretrain-
ing data to train W as well. Due to domain difference, not all pretraining examples are suitable
for training W . To exclude such examples, we associate each pretraining example d(pre)

i with an
ignoring variable bi ∈ [0, 1]. Note that bi is different from ai. bi is used to determine whether
d

(pre)
i should be ignored during training W and ai is used to determine whether d(pre)

i should be
ignored during training V . The corresponding formulation is:

min
A,B

∑O
i=1 L(W ∗(V ∗(A), B), H∗(B), d

(val)
i )

s.t. W ∗(V ∗(A), B), H∗(B) = min
W,H

N∑
i=1

L(W,H, d
(tr)
i ) + λ‖W − V ∗(A)‖2

2 + γ
M∑
i=1

biL(W,H, d
(pre)
i )

V ∗(A) = min
V,J

∑M
i=1 aiL(V, J, d

(pre)
i )

(7.5)
where γ is a tradeoff parameter and B = {bi}Mi=1. Note that W ∗ and H∗ are both functions of B.
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Figure 7.2: Learning by ignoring. Along the solid arrows, predictions are made and
train/validation losses are calculated. Along the dotted arrows, gradients are calculated and pa-
rameters (including ignoring variables and network weights) are updated.

7.3.1 Optimization Algorithm
In this section, we develop a gradient-based optimization algorithm to solve the three-level opti-
mization problem in Eq.(7.4). Drawing inspirations from [58], we approximate V ∗(A) using:

V ′ = V − ξV∇V

M∑
i=1

aiL(V, J, d
(pre)
i ), (7.6)

where ξV is a learning rate. We update J as:

J ← J − ξJ
M∑
i=1

ai∇JL(V, J, d
(pre)
i ). (7.7)

Substituting V ′ into
∑N

i=1 L(W,H, d
(tr)
i )+λ‖W−V ∗(A)‖2

2, we obtain an approximated objective∑N
i=1 L(W,H, d

(tr)
i ) + λ‖W − V ′‖2

2. Then we calculate the gradient of OW w.r.t to W and
approximate W ∗(V ∗(A)) using one-step gradient descent update of W :

W ′ = W − ξW∇W (
∑N

i=1 L(W,H, d
(tr)
i ) + λ‖W − V ′‖2

2) (7.8)

Similarly, we approximate H∗ with:

H ′ = H − ξH∇H(
∑N

i=1 L(W,H, d
(tr)
i ) + λ‖W − V ′‖2

2) (7.9)

Finally, we substituteW ′ andH ′ into
∑O

i=1 L(W ∗(V ∗(A)), H∗, d
(val)
i ) and getOA =

∑O
i=1 L(W ′,

H ′, d
(val)
i ). We calculate the gradient of OA w.r.t A and update A by descending the gradient:

A ← A− ξA∇A

∑O
i=1 L(W ′, H ′, d

(val)
i ) (7.10)
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A→W A→D D→W D→A W→D W→A Average
DAN-1 [60] 78.11 67.27 91.12 50.66 98.18 53.85 73.20
DAN-2 [60] 95.86 98.18 96.45 86.12 97.27 87.05 93.49
DAN-3 [60] 97.04 96.36 97.04 88.74 100.0 87.24 94.40
DANN-1 [32] 78.70 68.18 87.57 46.72 94.55 50.28 71.00
DANN-2 [32] 94.08 93.64 94.67 85.55 95.45 84.99 91.40
DANN-3 [32] 96.45 94.55 97.63 86.68 100.0 85.37 93.45
CDAN-1 [61] 83.84 71.82 94.08 56.47 97.27 60.98 77.41
CDAN-2 [61] 94.67 95.45 96.45 86.68 97.27 84.80 92.55
CDAN-3 [61] 97.04 95.45 97.63 85.93 99.09 87.24 93.73
MME-1 [82] 60.95 50.91 88.17 40.71 95.45 41.28 62.91
MME-2 [82] 95.86 96.36 96.45 84.05 99.09 85.74 92.93
MME-3 [82] 94.67 90.90 97.63 87.24 100.0 84.43 92.48

Pretrain Finetune
Ablation 1 No No source 96.45 97.48 97.63 85.46 99.09 85.37 93.58
Ablation 2 No Full source 96.45 93.64 97.63 87.43 99.09 86.12 93.39
Ablation 3 No Weighted source 98.22 97.27 97.63 86.68 98.18 86.87 94.14
Ablation 4 Full source No source 97.04 97.27 97.63 85.74 98.18 86.38 93.71
Ablation 5 Full source Full source 95.86 95.45 97.04 87.05 100.0 86.30 93.62
Ablation 6 Full source Weighted source 97.63 96.36 97.63 88.18 99.09 87.99 94.48
Ablation 7 Weighted source No source 96.45 99.09 97.04 86.49 99.09 86.49 94.11
Ablation 8 Weighted source Full source 95.86 91.82 97.63 88.37 100.0 87.05 93.46
Full LBI (ours) Weighted source Weighted source 98.82 99.09 97.04 87.80 99.09 86.87 94.79

Table 7.2: Accuracy (%) on the Office31 dataset. In the A → B notion, A denotes the source
data and B denotes the target data. 1, 2, 3 in DAN, DANN, CDAN, MME denote unsupervised,
semi-supervised, and supervised domain adaptation settings respectively.

Algorithm 7: Optimization algorithm for LBI
while not converged do

1. Update encoder V in pretraining phrase using Eq.(7.6)
2. Update head J in pretraining using Eq.(7.7)
3. Update encoder W in finetuning phrase using Eq.(7.8)
4. Update head H in finetuning using Eq.(7.9)
5. Update ignoring variables A using Eq.(7.10)

end

7.4 Experiments
In this section, we present experimental results. Please refer to the supplements for more hyper-
parameter settings and additional results.

7.4.1 Datasets
We perform experiments on three datasets: OfficeHome [92], Office31 [81], and ImageCLEF [68].
OfficeHome consists of 15,500 images of daily objects from 65 categories and 4 domains, in-
cluding Art (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw). Each category has an average
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C→P C→I P→C P→I I→C I→P Average
DAN-1 [60] 68.15 76.40 89.19 78.88 88.51 66.88 78.00
DAN-2 [60] 61.78 83.85 93.92 83.85 92.57 63.06 79.84
DAN-3 [60] 64.33 81.37 93.25 85.71 93.24 68.79 81.12
DANN-1 [32] 61.78 73.29 84.46 77.02 75.68 66.24 73.08
DANN-2 [32] 63.06 83.23 93.92 85.71 93.24 64.33 80.58
DANN-3 [32] 68.43 83.85 95.27 88.20 91.89 69.26 82.82
CDAN-1 [61] 64.97 70.81 70.27 78.26 90.54 64.33 73.20
CDAN-2 [61] 64.42 85.71 95.27 85.09 95.27 67.52 82.21
CDAN-3 [61] 64.97 87.58 93.24 89.44 94.59 67.52 82.89
MME-1 [82] 57.96 68.32 75.00 72.05 85.14 64.97 70.57
MME-2 [82] 61.15 80.12 93.92 81.99 93.92 59.97 78.51
MME-3 [82] 64.97 80.75 88.51 84.47 91.22 61.78 78.62

Pretrain Finetune
Ablation 1 No No source 59.87 86.34 91.89 84.47 91.22 65.61 79.90
Ablation 2 No Full source 68.02 86.34 93.24 86.04 90.54 67.39 81.93
Ablation 3 No Weighted source 67.52 88.20 94.59 84.47 95.95 66.88 82.94
Ablation 4 Full source No source 62.42 87.28 93.87 83.79 93.72 63.43 80.75
Ablation 5 Full source Full source 68.79 86.96 94.59 85.09 93.92 68.15 82.92
Ablation 6 Full source Weighted source 68.15 89.44 95.45 86.95 97.30 68.15 84.24
Ablation 7 Weighted source No source 63.06 87.58 93.23 86.34 93.24 64.33 81.30
Ablation 8 Weighted source Full source 66.88 85.09 93.24 85.71 94.59 66.88 82.07
Full LBI (ours) Weighted source Weighted source 70.70 89.44 93.24 87.58 95.95 70.06 84.50

Table 7.3: Accuracy (%) on the ImageCLEF dataset. In the A→ B notion, A denotes the source
data and B denotes the target data. 1, 2, 3 in DAN, DANN, CDAN, MME denote unsupervised,
semi-supervised, and supervised domain adaptation settings respectively.

of about 70 images and a maximum of 99 images. Office31 contains 4,110 images belong-
ing to 31 classes and 3 domains, including Amazon website (A), web camera (W), and digital
SLR camera (D). The number of images in domain A, W, and D is 2817, 795, and 498 re-
spectively. ImageCLEF consists of 1,800 images from 3 datasets (domains) with 12 classes,
including Caltech-256 (C), ILSVRC2012 (I), and Pascal VOC2012 (P). We split OfficeHome,
Office31, and ImageCLEF into train/validation/test sets with a ratio of 5:3:2, 6:2:2, and 6:2:2 re-
spectively. For each dataset, we perform domain adaptation [60] studies: one domain is selected
as source and another domain is selected as target; data in the source domain is leveraged to help
with model training in the target domain. In the learning-by-ignoring framework, source data is
used as pretraining data and target data is used as finetuning data.

7.4.2 Baselines
We compare with the following domain adaptation (DA) baselines. For each baseline, we exper-
imented with three DA settings: 1) the labels of source examples are used for DA and the labels
of target examples are not; 2) the labels of target examples are used for DA and the labels of
source examples are not; 3) both the labels of source examples and target examples are used for
DA.

• DAN [60], which matches mean embeddings of different domain distributions in a repro-
ducing kernel Hilbert space.
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Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar
DAN-1 [60] 30.86 46.25 54.19 33.54 41.22 45.03 33.33
DAN-2 [60] 67.66 86.77 72.74 57.51 87.59 69.50 62.14
DAN-3 [60] 68.46 87.94 75.53 59.05 85.13 72.29 60.29
DANN-1 [32] 33.37 43.56 55.75 40.95 47.66 50.50 37.24
DANN-2 [32] 67.09 83.37 73.63 55.56 82.79 69.83 58.64
DANN-3 [32] 68.80 85.60 72.96 60.08 86.53 72.74 59.88
CDAN-1 [61] 37.49 49.77 59.55 41.56 51.99 54.41 41.77
CDAN-2 [61] 68.23 84.43 73.41 60.49 84.66 71.84 59.67
CDAN-3 [61] 67.31 86.65 73.52 61.93 84.66 71.06 61.93
MME-1 [82] 28.11 40.40 52.40 29.84 35.71 40.34 29.22
MME-2 [82] 68.23 84.66 70.73 55.35 85.01 66.37 58.44
MME-3 [82] 69.60 85.01 71.96 56.97 84.66 67.93 52.47

Pretrain Finetune
Ablation 1 No No source 66.40 87.47 73.18 65.23 87.24 72.96 64.40
Ablation 2 No Full source 68.69 85.36 74.75 60.08 86.07 72.29 59.47
Ablation 3 No Weighted source 68.00 86.42 75.08 62.14 86.53 73.52 63.37
Ablation 4 Full source No source 69.71 87.94 76.65 67.28 88.17 76.54 65.02
Ablation 5 Full source Full source 67.54 85.13 74.75 60.08 84.54 71.17 61.11
Ablation 6 Full source Weighted source 68.00 84.66 74.64 61.73 86.3 71.84 63.17
Ablation 7 Weighted source No source 70.51 87.70 76.20 69.75 89.34 77.65 68.52
Ablation 8 Weighted source Full source 67.66 85.25 74.41 61.52 86.77 73.30 61.52
Full LBI (ours) Weighted source Weighted source 69.03 84.66 75.42 61.32 85.83 73.52 62.76

Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Average
DAN-1 [60] 28.69 52.96 51.03 33.37 65.69 43.01
DAN-2 [60] 70.40 74.19 65.23 68.11 86.07 72.33
DAN-3 [60] 70.51 75.75 63.79 69.14 86.89 72.90
DANN-1 [32] 33.37 56.54 52.67 42.74 70.73 47.09
DANN-2 [32] 65.60 72.29 60.70 68.00 86.07 70.30
DANN-3 [32] 68.80 73.18 64.61 68.46 87.70 72.45
CDAN-1 [61] 41.14 58.21 56.58 41.83 73.54 50.65
CDAN-2 [61] 69.49 73.41 63.58 67.54 88.06 72.07
CDAN-3 [61] 70.74 72.63 65.23 69.94 87.35 72.75
MME-1 [82] 26.97 48.04 46.71 33.71 61.71 39.43
MME-2 [82] 67.31 69.50 59.26 66.51 86.18 69.80
MME-3 [82] 69.14 73.07 62.96 68.80 85.83 70.70

Pretrain Finetune
Ablation 1 No No source 68.91 73.85 60.70 69.14 86.77 73.02
Ablation 2 No Full source 67.77 74.75 66.16 69.60 87.47 72.71
Ablation 3 No Weighted source 69.94 74.53 65.02 70.17 89.23 73.66
Ablation 4 Full source No source 69.71 76.20 68.96 69.37 88.06 75.30
Ablation 5 Full source Full source 66.74 71.84 64.61 66.63 87.00 71.76
Ablation 6 Full source Weighted source 66.97 74.19 65.43 67.54 88.41 72.74
Ablation 7 Weighted source No source 70.63 77.65 67.90 69.83 90.52 76.35
Ablation 8 Weighted source Full source 67.43 74.19 68.31 68.34 86.18 72.91
Full LBI (ours) Weighted source Weighted source 69.94 74.41 67.28 67.89 86.18 73.19

Table 7.4: Accuracy (%) on the OfficeHome dataset.

• DANN [32], which uses adversarial learning to learn representations so that source domain
and target domain are not distinguishable.

• CDAN [61], which conditions adversarial adaptation on discriminative information.
• MME [82], which is a semi-supervised domain adaptation method based on minimax

entropy.
We also compared with data re-weighting methods including [79, 83]. These methods focus on
re-weighting target data while our methods focus on re-weighting source data. Please refer to the
supplements for details.
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7.4.3 Experimental Settings
We use ResNet-34 [37] pretrained on ImageNet [22] as the backbone. Our models were trained
using the Adam [47] optimizer, with a batch size of 64, a learning rate of 1e-4 for the feature
extractor, a learning rate of 1e-3 for the classifier, a weight decay of 5e-4, for 50 epochs. The
learning rate was decreased by a factor of 10 after 40 epochs. In learning by ignoring, γ is set to
1e-2 for all datasets; λ is set to 7e-3 for OfficeHome, 5e-4 for Office31, and 3e-3 for ImageCLEF.

7.4.4 Results
Table 7.2 shows the results on the Office31 dataset. In the A → B notion, A denotes the source
dataset and B denotes the target dataset. As can be seen, our proposed LBI method achieves
better averaged accuracy than the domain adaptation (DA) baselines including DAN, DANN,
CDAN, and MME. The major reason is that our method automatically identifies source examples
that are not suitable for pretraining due to source-target domain shift and excludes them from the
pretraining process. In contrast, these DA baselines adapt all source examples into the target
domain and lack the ability of explicitly identifying source examples that are not suitable for
domain adaptation. Table 7.3 shows the results on the ImageCLEF dataset. Our proposed LBI
achieves better average accuracy than the DA baselines, thanks to its mechanism of ignoring
source examples that are not suitable for helping with the learning on the target domain. Table 7.4
shows the results on the OfficeHome dataset. LBI outperforms all DA methods, which further
demonstrates the effectiveness of our proposed learning-by-ignoring framework. On this dataset,
using source dataset for finetuning leads to worse performance. This is probably because the
source domains in this dataset have large domain shifts with the target domains. Therefore,
using source data directly for finetuning may not be proper. However, using non-ignored source
data for pretraining is helpful.

7.4.5 Ablation Studies
We perform ablation studies to check the effectiveness of individual modules in our framework.
Unless otherwise notified, γ was set to 1e-2 for all three datasets; λ was set to 7e-3 for Office-
Home, 5e-4 for Office31, and 3e-3 for ImageCLEF.

• Ablation setting 1: no pretraining, finetune on target data only. We ignore the source
dataset and directly train a model on the target dataset. This is equivalent to setting both λ
and γ in LBI (Eq.(7.5)) to 0.

• Ablation setting 2: no pretraining, finetune on target data and all source examples. There
is no pretraining; we combine the source dataset and the target dataset as a single dataset,
then train a model on the combined dataset. This is equivalent to setting λ to 0 and setting
all ignoring variables in B to 1 in LBI (Eq.(7.5)).

• Ablation setting 3: no pretraining, finetune on target data and weighted source examples.
There is no pretraining; the model is directly trained on all target examples and selected
source examples. This is equivalent to setting the tradeoff parameter λ to 0 in the LBI
framework (Eq.(7.5)).
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• Ablation setting 4: pretrain on all source examples, finetune on target data only. We first
train a modelM1 on the full source dataset. Then we train a modelM2 on the target dataset.
When training M2, we encourage its weights to be close to the optimally trained weights
of M1 by minimizing their squared L2 distance. This is equivalent to setting γ to 0 and
setting all ignoring variables in A to 1 in LBI (Eq.(7.5)).

• Ablation setting 5: pretrain on all source examples, finetune on target and all source exam-
ples. This setting is similar to ablation 4, except that M2 is trained on target and full source
dataset. This is equivalent to setting ignoring variables in A and B to 1 in LBI (Eq.(7.5)).

• Ablation setting 6: pretrain on all source examples, finetune on target data and weighted
source examples. This setting is similar to ablation 4, except that M2 is trained on the
target and weighted source dataset. This is equivalent to setting all ignoring variables in A
to 1 in LBI (Eq.(7.5)).

• Ablation setting 7: pretrain on weighted source examples, finetune on target data only.
This is equivalent to setting the tradeoff parameter γ to 0 in the LBI framework (Eq.(7.5)).

• Ablation setting 8: pretrain on weighted source examples, finetune on target data and all
source examples. In this setting, all source examples are used for finetuning, without
ignoring any of them. This is equivalent to setting all ignoring variables in B to 1 in the
LBI framework (Eq.(7.5)).

• Ablation study on λ. We explore how the performance varies as the tradeoff parameter λ
in Eq.(7.5) increases. In this study, the other tradeoff parameter γ in Eq.(7.5) is set to 1e-2.
We report the average accuracy on the validation set. The experiments are conducted on
ImageCLEF and OfficeHome. Please refer to the supplements for results on OfficeHome.

• Ablation study on γ. We explore how the performance varies as γ increases. We report
the average accuracy on the validation set. The experiments are conducted on ImageCLEF
and OfficeHome. In this study, the other tradeoff parameter λ is set to 3e-3 for ImageCLEF
and 7e-3 for OfficeHome. Please refer to the supplements for results on OfficeHome.

Table 7.2 shows the ablation study results on the Office31 dataset. From this table, we make
the following observations. First, during pretraining, ignoring certain source examples is better
than using all source examples. For instance, ablation 7 achieves better average accuracy than
ablation 4 where the former performs pretraining on weighted source data and the latter uses
all source examples for pretraining. The rest settings of ablation 7 and 4 are the same. As an-
other example, our proposed full LBI framework achieves higher average accuracy than ablation
6 where the former performs ignoring of certain source examples during pretraining while the
latter does not. The rest settings of full LBI are the same as those of ablation 6. The reason is
that due to domain shift between source and target, some source examples are largely different
from the target examples; if using such source examples for pretraining, the pretrained encoder
may be biased to the source distribution and cannot well represent target examples. Our pro-
posed approaches automatically identify source examples that have large domain discrepancy
with the target and remove them from the pretraining process. Consequently, the pretrained
encoder with ignoring is better than the encoder pretrained using all source examples without
ignoring. Second, when using source examples to finetune the encoder (together with target
examples), it is beneficial to ignore some source examples in the finetuning process. As can
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be seen, in terms of average accuracy, the full LBI framework performs better than ablation 8
where the former ignores certain source examples during finetuning while the latter does not.
The rest settings of these two methods are the same. Similarly, ablation 6 outperforms ablation
5; ablation 3 achieves higher average accuracy than ablation 2. Again, the reason is that due
to domain shift, some source examples are not suitable for finetuning the encoder of the target
dataset. Our proposed ignoring approach excludes such source examples from finetuning, hence
achieving better performance than not using ignoring. Third, without the ignoring mechanism,
using source examples for finetuning is harmful. For example, ablation 2 which uses all source
samples for finetuning achieves lower average accuracy than ablation 1 which uses no source
example for finetuning. Similarly, ablation 5 achieves worse average accuracy than ablation 4;
ablation 8 performs less well than ablation 7. However, once we add the ignoring mechanism and
use non-ignored source examples for finetuning, the resulting average accuracy is higher than not
using any source example for finetuning, as can be seen from the average accuracy results that
ablation 3 outperforms ablation 1; ablation 6 outperform ablation 4; and the full LBI method
outperforms ablation 7. This further demonstrates the effectiveness of our proposed ignoring
mechanism, which can 1) identify sources examples that are close to the target domain and use
them for finetuning; 2) recognize source example having large domain shifts from the target and
exclude them from finetuning. In contrast, the baseline methods can only do the black-or-white
choice: either using all source examples for finetuning or not using any source example at all,
which hence leads to inferior performance.

Table 7.3 shows ablation results on ImageCLEF. From this table, we make similar obser-
vations as in Table 7.2. First, in pretraining, the ignoring mechanism which identifies source
examples that have large domain shifts from the target and excludes them from the pretraining
process achieves better performance than not using ignoring. This is evidenced from the aver-
age accuracy results that ablation 7 outperforms ablation 4; our full LBI framework achieves
better accuracy than ablation 6. Second, during finetuning, ignoring certain source examples
works better than using all source examples. This is demonstrated by the average accuracy re-
sults that the full LBI outperforms ablation 8; ablation 6 outperforms ablation 5; and ablation 3
outperforms ablation 2.

Table 7.4 shows the ablation results on OfficeHome. The observations from these results
are similar to those made in Table 7.2 and 7.3. First, performing ignoring on source during
pretraining is beneficial, as seen from the average accuracy results that ablation 7 outperforms
ablation 4; ablation 8 outperforms ablation 5; and the full LBI outperforms ablation 6. Second,
performing ignoring on source during finetuning is advantageous than not using ignoring, as
demonstrated by the average accuracy results that ablation 3 performs better than ablation 2;
ablation 6 outperforms ablation 5; and the full LBI framework outperforms ablation 8.

Figure 7.3(Left) shows how the average accuracy on ImageCLEF varies as the tradeoff pa-
rameter λ increases. As can be seen, when λ increases from 0.001 to 0.007, the accuracy in-
creases. This is because a larger λ results in a stronger effect of pretraining. The pretrained
encoder captures information of non-ignored source examples and such information is valuable
for finetuning. However, if λ continues to increase, the accuracy starts to decrease. The reason is
that an excessively large λ leads to too much emphasis on the pretrained encoder and pays less
attention to the finetuning on the target data. Figure 7.3(Right) shows how the average accuracy
varies as the tradeoff parameter γ increases. When γ increases from 0.001 to 0.01, the accuracy
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Figure 7.3: (Left) How accuracy changes as λ increases. (Right) How accuracy changes as γ
increases.

increases. This is because a larger γ imposes a stronger utilization of non-ignored source exam-
ples as additional data for finetuning. However, further increasing γ leads to a worse accuracy.
The reason is that if γ is too large, the source data will dominate target data.

7.5 Conclusions
In this chapter, we propose a novel machine learning framework – learning by ignoring (LBI),
motivated by the ignoring-driven learning methodology of humans. In LBI, an ignoring variable
is learned for each pretraining data example to identify examples that have significant domain
difference with the target distribution. We formulate LBI as a three-level optimization problem
which consists of three learning stages: an encoder is trained by minimizing a weighted pre-
training loss where the loss of each data example is weighted by its ignoring variable; another
encoder is finetuned where during the finetuning this encoder is encouraged to be close to the
previously pretrained encoder; the ignoring variables are updated by minimizing the validation
loss calculated using the finetuned encoder. We conduct experiments on various datasets where
the results demonstrate the effectiveness of our method.
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